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Abstract

This document provides descriptions and documentation of water-
mover controllers implemented in the Management Simulation Engine
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1 Introduction

The RSM consists of two interactive, primary components, the Hydrologic
Simulation Engine (HSE) and the Management Simulation Engine (MSE).
The HSE is a finite volume, coupled surface/groundwater/stream flow nu-
merical model which includes structure flow equations for a wide variety
of control structures, and implements efficient numerical solutions of con-
junctive hydrological simulations [1]. The MSE is comprised of two primary
subcomponents: a suite of low-level structure control algorithms which serve
as flow regulators for individual structures, and, a set of high-level super-
visory control functions which provide dynamic controller modification and
coordination intended to facilitate regional control objectives. The high-level
functions are collectively referred to as ’supervisors’, and are documented
separately [2]. This document describes the development, implementation,
and use of the low-level structure control algorithms, otherwise referred to
as ’controllers’.

In accordance with the modular, object-oriented design of the RSM,
along with it’s flexible and extensible input format specification employing
the extensible markup language (XML), the design of controllers for the
RSM consists of a base controller class with a uniform interface and spe-
cialized derived classes. Consistent with this object-hierarchical design it is
important that the controllers which serve to regulate the watermover mass
flows do not depend on physical characteristics of particular water control
structures. In this way, the controller maintains the ability to regulate flow
for any class of watermover. The controllers therefore also have a uniform
interface to the watermovers, allowing for dynamic controller switching. A
depiction of the overall MSE architecture is shown in figure 1.

At the lowest layer is the hydrological state information (Σ) computed
by the HSE. This information includes water stages, flow values, rainfall,
ET, hydrologic boundary conditions, or any other state variable used as
input or computed as output by the HSE. All such variables are made avail-
able to the MSE and Assessors through the implementation of a uniform
data monitor interface. The top level of the MSE is the supervisory layer.
The function of a supervisor is to produce the supervisory control signal
(µ) for a single, or collection of hydraulic structure controllers. Once the
controllers have computed their respective control values (χ), these signals
are applied as flow constraints to the structure watermovers in the HSE.
Each watermover will compute a maximum flow capacity based on the hy-
drological state conditions and hydraulic transfer function of the structure.
The resultant controlled flow will be some fraction of the currently available
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Figure 1: HSE MSE schematic

maximum flow capacity. Therefore, the design of the controller/watermover
unitary interface depends upon output control signals in the interval of 0 to
1. A control of zero corresponds to no flow, a completely closed structure,
and a control of one means the structure is fully open.

Important: The controllers are implemented as flow control regula-
tors. The output of the controller is applied as an amplitude scale factor
to the computed flow of the watermover. The intended range of controller
outputs is in the interval of [0,1]. The user may define the control output
range for all of the controllers except the Sigmoid controller. The user is
strongly cautioned that implementation of controllers with output control
ranges outside of the interval [0,1] may result in unintended modulation of
watermover flow values.

1.1 Available Controllers & MSE Network

The current implementation of controllers include:

• PID controller
• PI with nonlinear activation (Sigmoid controller)
• Piecewise linear transfer function (SetPoint controller)
• Rule based expert system (Fuzzy controller)
• Finite state machine (User controller)
• Linear Programming interface (LP controller)

MSE controllers are defined and configured from within the <controller>
sections of the RSM model XML file. Details on the allowable XML entries
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are provided in each specific controller section.
An important feature of the MSE in general is the usage of Assessors

and the MSE Network to provide synoptic state variable inputs for the
controllers and supervisors. The MSE Network is an abstraction of the canal
network and water control structures based on graph theory. It provides
implicit aggregation of HSE canal network segments into Water Control
Units (WCU’s). The WCU is an integrated data object which stores assessed
values of state variables relevant to the collection of HSE segments. Through
the use of assessors and monitors, the controllers and supervisors access this
synoptic information. The MSE Network also contains information relevant
to management policies of the WCU’s, and operational characteristics of the
structure watermovers. The MSE Network is fully described in section 14.

1.2 Multiple Controllers

Implementation of generic, nonlinear field controllers, such as those com-
monly employed by the District, may be difficult to achieve with a single
control algorithm per structure. The MSE controllers therefore support the
notion of ’controller overloading’. This means that more than one controller
may be attached to a watermover. The intention is that separate controllers
with distinct control response characteristics, may be enabled in varying
state-variable regimes suitable to each controller. For example, a simple
piecewise linear transfer function may be used under dry conditions, while
a rule based expert system (fuzzy) controller may be more effective in flood
conditions. A MSE supervisor can select the controller for a watermover
based on state-variable conditions [2].

Note that the MSE to HSE (controller to watermover interface) is not
designed to allow multiple, concurrent controllers to provide flow modu-
lation commands to a watermover. Although multiple controllers may be
attached to a watermover, and can perform control algorithm computations
concurrently (in the same timestep) only one controller per timestep will
have it’s control output applied to a watermover. It is the user’s responsi-
bility to ensure that multiple controllers are supervised accordingly. When
multiple controllers per watermover are initially parsed and created from the
XML model file specifications, the first controller that is parsed will be set
as the active controller for the watermover. Subsequently, controllers that
are encountered for the same watermover will replace the existing active
watermover if the controller attribute control="on" is set.
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2 Basic Control Theory

The development of control theory and its implementation is arguably one of
the most influential technological achievements of man. Without the basis
of negative feedback control, the industrial revolution would not have been
possible. A brief review of control systems theory is given for convenience.

2.1 Open Loop Response

Consider a system as shown in Figure 2. The system is characterized by
the system function, H(s), which accepts inputs X(s) and produces a cor-
responding output Y (s).

�������� ����

Figure 2: Open Loop System

The variable s represents a state variable of the system, it conventionally
refers to the Laplace transform state representation of a time-domain signal,
i.e.:

L(s) =
∫ +∞

0
f(t)e−st dt. (1)

The response of the system is then characterized by the expression

Y (s) = X(s)H(s). (2)

As the Laplace transform generalizes the Fourier transform (let s = jω),
we can also think of H(s) in terms of the system frequency response function.
A system such as that shown in Figure 2 is an open loop system, there is
no feedback of the output Y (s) to the input of the system function. If the
system function is stable and bounded in response to any system input, then
the output is also stable and bounded.
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2.2 Closed Loop Feedback

Consider now a simple extension to the open loop system depicted in Fig-
ure 3. In this scenario the output signal Y (s) is fed-back to the input of the
system, resulting in a closed loop feedback path. The feedback signal may be
conditioned by a feedback function F (s). The system function is preceded by
a control function Hc(s) that receives the combined input/feedback signal.
The control function serves to adjust the system function input to achieve
a desired system output.
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Figure 3: Closed Loop System

The desired system output is predetermined, and some distance metric
between the desired output and the actual output defines an error signal.
This error signal is presented as input to the control function. Minimization
of the error signal defines the objective of the control function.

Consolidating the control function and system function into a composite
system function H(s), the modified system response is:

Y (s) =
H(s)

1 + F (s)H(s)
X(s). (3)

One can immediately see that if the control function is not judiciously
selected, the possibility exists that the denominator of system response can
become zero, in which case the system output is unbounded (a pole), or
that it could become uncontrollably large, resulting in zero system output
(a zero). Thus a price that has to paid for increasing the system complexity
towards control of the system response, is careful design and implementation
of the control function.
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3 Lookup Tables

As a simple alternative to actively controlling a rated flow or hydraulic
structure watermover, the collection of lookup table watermovers can be
used directly to simulate known flow characteristics. A simple example is
the use of a 1-D lookup table to operate pumps when the water level in an
agricultural area rises above a certain value. The following example shows a
<single control> watermover defined to discharge water from waterbody
11 into waterbody 12 based on stage levels in waterbody 21. Below stage
levels of 12.5 there is no discharge. Between stage 12.5 and 13.5 a pump
with discharge capacity of 400 units/s is activated. In the stage region of
13.5 - 14.0 a linear interpolation between 400 and 800 units/s is simulated,
and above stages of 14, the discharge is constant at 800 units/s.

<watermovers>
<single_control wb1="11" wb2="12" control="21" name="Smith farm">

0.0 0
12.5 400
13.5 400
14.0 800
50.0 800

</single_control>
</watermovers>

In this manner, a variety of control procedures can be simulated using
<single control>, <dual control> and <delta control> watermovers.
Details on each of these lookup table watermovers is provided in the HSE
User’s Manual [5].

10



4 PID Controller

A significant development in the implementation of closed loop feedback
control is the Proportional Integral Derivative (PID) control function. It
essentially is comprised of a two-stage control function, a Proportional Inte-
gral (PI) control, in conjunction with a Proportional Derivative (PD) con-
trol. The PI control makes adjustments in response to the total (integral)
of the error, and therefore serves to provide adjustments aimed at satisfying
the steady-state system response. Without PI control, the system would not
be likely to settle at a desired output value. The PD control supplies adjust-
ments in response to changes in the system error, and therefore addresses
the transient response of the system.

The addition of proportional, derivative and integral control functions
can be represented as an extension of the system shown in Figure 3, where
the control function is decomposed into the three components as shown in
Figure 4.

�������� ����γ�
γ�	�

γ
 �

� �
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Figure 4: PID Control System

The corresponding control function for this implementation is

Hc(s) = γ1 +
γ2

s
+ γ3 s = γ3

(
s2 + γ1

γ3
s + γ2

γ3

s

)
. (4)

Inspection of this expression reveals that this system function has two
zeros and a pole. Again, care must be taken to ensure system stability in
response to the implemented control function.
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4.1 PID Implementation

In the time-domain, the PID control can be represented via the expression

hc(t) = γP ε(t) + γD
dε

dt
+ γI

∫ t

0
ε(t) dt. (5)

where γP γD and γI represent gain factors for the proportional, derivative
and integral terms, and ε the system error. Conversion of this expression
into a time difference equation results in

hc(i) = γP εi + γD
4εi

4t
+ γI

n∑
i=1

εi4t. (6)

Assuming that a simple arithmetic difference is employed as the system
state error-metric:

ε(t) = φ(t)− T (t) (7)

where the current system state variable to be controlled is φ(t) and the
desired system target state T (t), the control computation for a single time-
step can be expressed as

hc(i) = γP (φi−Ti)+γD
(φi − Ti)− (φi−1 − Ti−1)

(ti − ti−1)
+γI

n∑
i=1

(φi−Ti)(ti−ti−1).

(8)
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4.1.1 PID Tuning

Selection of the appropriate control gains is highly implementation depen-
dent. The analytical solution is to investigate the locations of the poles
and zeros in the s-plane applied to the root-locus methods. While this is
a satisfying analytical exercise, it requires knowledge of the compensated
system function H(s)

1+F (s)H(s) . When this is not feasible, various prescriptive
algorithms such as the Zeigler-Nichols tuning method may be applied.

The Zeigler Nichols tuning method may be employed as follows:

1. Set the integral gain term to zero.

2. Gradually increase the proportional gain from zero until the system
just begins to oscillate continuously. The proportional gain at this
point is the ultimate gain, PU . The period of oscillation at this point
is the ultimate period, TU . The ultimate period must be expressed in
the same units used internally in the PID algorithm for calculations
involving the time step. RSM uses seconds.

3. Set the proportional and integral gain values according to values in
Table 4.1.1.

Control Type Performance γP γI γD

P 1/4 Decay 0.5 PU

PI 1/4 Decay 0.45 PU 0.54 PU/TU

PID 1/4 Decay 0.6 PU 1.2 PU/TU 0.075 PUTU

PID Some overshoot 0.33 PU 0.66 PU/TU 0.11 PUTU

PID No overshoot 0.2 PU 0.606 PU/TU 0.10 PUTU

Table 4.1.1. Zeigler Nichols Tuning Parameters

13



4.2 PID XML

To implement a controller in the RSM, an appropriate controller definition
must be provided for the respective watermover which is to be controlled.

The controller environments available for the PID controller are shown
in Table 4.2.

environment attribute meaning
<pidctrl> PID controller definition

cid positive (cid>0) controller id
label optional controller label
wmID ID of watermover to be controlled
control ’on’ or ’off’
type ’positive’ or ’negative’ control
offset target value bias term
nvals number of integration values
Gp Proportional gain
Gi Integral gain
Gd Derivative gain
ctrlMin Minimum control output value
ctrlMax Maximum control output value

<target> Target state specification
<*monitor> State variable specification

Table 4.2. PID Controller XML

The control attribute can be used to deactivate the controller. If the
value of control is set to any value other than “on”, the controller will be
deactivated. This means that the control output will be forced to a value
of 1, no control output variations will occur. Since the control outputs
are applied as amplitude modulation factors to the watermover flow, the
watermover flow will default to it’s uncontrolled values.

The type attribute controls the sign of the output control values. If
type is “positive” (the default) then the output control values are computed
according to equation (8). If type is “negative”, the control output is the
negative of equation (8).

The offset attribute allows the user to specify a numerical bias term
which is applied to the target value in computation of the current controller

14



error term. If the offset value is set, the control deviation will be computed
as:

ε(t) = φ(t)− [T (t) + Ω] (9)

where Ω is the value of the offset.

The nvals attribute is currently not used.

The following example illustrates a PID controller applied to a water-
mover.

<controller id="1">
<!-- Controller for discharge from segment 1 -->
<pidctrl cid="101" label="PIDCtrl 1: " wmID="1"
type="positive"
nvals="10" Gi="0.01" Gd="0.0" Gp="7.0"
ctrlMin="0.0" ctrlMax="1.0" >
<target label="const_target">

<const value="500.0"></const>
</target>
<segmentmonitor id="1" attr="head"></segmentmonitor>

</pidctrl>
</controller>

A full example of PID controllers applied in a RSM test case is shown
in 15.3.
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5 Sigmoid Controller

Owing to the generic abstraction of a watermover as an object that is inde-
pendent of physical constraints, a watermover may have no physical control
variable which one can control to regulate flow. In such cases the controller
may be implemented as a mass flow regulator which modulates the flow vol-
ume by a smooth, monotonic function in the interval [0,1]. To achieve this
objective, the model development division has conceived and implemented
a Sigmoid controller. The sigmoid (s-shaped) controller provides the desired
functionality for watermovers without an obvious physical control variable.
In other cases where a smooth control function is required with arbitrary
state and control variable inputs, the sigmoid controller can provide the
desired response and flexibility.

5.1 Sigmoid Implementation

The sigmoid controller is essentially a PI controller with a single nonlinear
activation function (the sigmoid) filtering the controller output. The PI
portion of the controller is implemented as follows

hPI(i) = γP εi + γI

n∑
i=1

εi4t. (10)

Once a preliminary control output is available, the output is processed
by a nonlinear sigmoidal activation function S(x), the logistic function. This
function serves to limit the possibly unbounded control outputs to the inter-
val [0,1], while also providing an adjustable derivative for the linear portion
of the activation function. Finally, the processed control signal is scaled by
a constant scale factor α. The resultant sigmoid control signal is therefore
given by

hS(i) = α S (hPI(i)) (11)

The logistic function is a special case of the more general hyperbolic
tangent function. The hyperbolic tangent may be expressed in exponential
terms as

tanh(cx) =
ecx − e−cx

ecx + e−cx
. (12)

As a result of the exponential basis of the hyperbolic tangent, its deriva-
tives have a particularly simple expression. A problem with the hyperbolic
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tangent for output control functions is that it has poles spaced at periodic in-
tervals across its ordinal domain. The logistic function is however a bounded
function with limits at −∞ and +∞ of 0 and 1 respectively. The logistic
function is expressed as

S(cx) =
1

1 + e−cx
. (13)

with c > 0. The derivative is specified by S′(cx) = c S(1− S) > 0, from
which it follows that S is a smoothly increasing monotonic function. A plot
of S(x) is shown in Figure 5 for several values of the positive constant c.
The value of c determines the slope of the function at the origin, and can
change the functional behavior from that of a slowly rising transition (c→0)
to one of a unit step function (c →∞).
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Figure 5: Logistic Activation Function

Variants of the hyperbolic tangent, or logistic sigmoidal functions are
commonly employed as the neuronal activation function in neural networks.
The sigmoid controller is therefore a PI controller with a single output neu-
ron modulating the control function.
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5.2 Sigmoid XML

The controller environments available for the Sigmoid controller are shown
in Table 5.2.

environment attribute meaning
<sigmoidctrl> Sigmoid controller definition

cid positive (cid>0) controller id
label optional controller label
wmID ID of watermover to be controlled
control ’on’ or ’off’
type ’positive’ or ’negative’ control
nvals number of integration values
offset target value bias term
scale output scale factor α
c argument for exponential term
Gp Proportional gain
Gi Integral gain

<target> Target state specification
<*monitor> State variable specification

Table 5.2. Sigmoid Controller XML

The control attribute can be used to deactivate the controller. If the
value of control is set to any value other than “on”, the controller will be
deactivated. This means that the control output will be forced to a value
of 1, no control output variations will occur. Since the control outputs
are applied as amplitude modulation factors to the watermover flow, the
watermover flow will default to it’s uncontrolled values.

The type attribute controls the sign of the output control values. If
type is “positive” (the default) then the output control values are computed
according to equations (11) and (13). If the type is “negative”, the control
output is computed by the equation

hS(i) = α [1− S (hPI(i))] (14)

The offset attribute allows the user to specify a numerical bias term
which is applied to the target value in computation of the current controller
error term. If the offset value is set, the control deviation will be computed
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according to equation (9).

The c attribute specifies the numeric value of the exponential argument
in the logistic function, equation (13).

The scale attribute sets the numeric value of the amplitude scale factor,
α, in equation (11).

The nvals attribute is currently not used.

The following example illustrates a Sigmoid controller applied to a wa-
termover.

<controller id="1">
<!-- Controller for discharge from segment 1 -->
<sigmoidctrl cid="101" label="SigmoidCtrl 1: " wmID="1"
type="positive" control="on" c="0.1" Gp="10.0" Gi="0.4">
<target label="const_target">
<const value="500.0"></const>

</target>
<segmentmonitor id="1" attr="head"></segmentmonitor>

</sigmoidctrl>
</controller>

A full example of the Sigmoid controller applied in a RSM test case is
shown in 15.4.
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6 SetPoint Controller

The PID and Sigmoid controllers are active-feedback, closed-loop response
functions which seek to minimize the error between the actual system states
and the desired system states. Maintenance of such controllers requires
selection of gains and other parameters, which may not always be obvious or
convenient. It is also realized that water management operational techniques
have been derived over the years based on simple rules and binary or linear
switches applied at known threshold points. The purpose of the setpoint
controller is to provide such operational functionality.

6.1 SetPoint Implementation

6.1.1 Constant SetPoint

In its’ simplest form, the setpoint controller simply assigns a constant control
output value (the setpoint), regardless of the input state variables. The
prescription for the controller output is therefore:

hSP (i) = Csp

where Csp is the constant setpoint value specified for the controller.
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6.1.2 Binary SetPoint

Now consider the case where a simply binary switch is desired, such that the
controller output can assume only one of two values, based on the relation
of a monitored state variable to a threshold (or trigger) value. A depiction
of such a control transfer function is shown in Figure 6, where SPL and SPH

represent the low and high set point values of the control output (hSP ), and
τL and τH represent the low and high trigger values of the state variable φ
which control the transition from SPL to SPH .

τ� τ�

���

���

φ

���

Figure 6: Binary Switch Set Point Control

This function is implemented in the RSM as follows:

hSP (i) =


SPL ; φ < τL

SPL ; if (φ− τL) < (τH − φ) for τL < φ < τH

SPH ; φ > τH

SPH ; if (φ− τL) >= (τH − φ) for τL < φ < τH

(15)
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It simply means that if the state variable is less than the lower trig-
ger threshold, the lower setpoint value is returned. If the state variable is
greater than the higher trigger threshold, then the higher setpoint value is
returned. If the state variable is in the region between the low and high
trigger thresholds, then whichever setpoint threshold which is closest to the
state variable will be used.

The preceding binary setpoint assumed that the desired control transfer
function was implemented as a positive (up) step function. The setpoint
controller uses the step token to control the response of the transfer func-
tions as either “up” or “down” progressing functions. In the case that the
binary switch setpoint is implemented as a “down” step, the control transfer
function is shown in Figure 7 with the following implementation is used:

hSP (i) =


SPH ; φ < τL

SPH ; if (φ− τL) < (τH − φ) for τL < φ < τH

SPL ; φ > τH

SPL ; if (φ− τL) >= (τH − φ) for τL < φ < τH

(16)

τ� τ�

���

���

φ

���

Figure 7: Binary Switch Set Point Control - Down Step
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6.1.3 Linear Interpolated SetPoint

In situations where a linear interpolation between two setpoint values is ap-
propriate, the setpoint controller will perform a linear extrapolation between
the low and high setpoint abscissa and low and high trigger ordinates. A
graphical depiction of this behavior is shown in Figure 8
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Figure 8: Linear Interpolation Set Point Control

The corresponding RSM implementation is prescribed as:

hSP (i) =


Csp ; φ < τL or φ > τH

SPL +
(

SPH−SPL
τL−τH

)
(φ− τL) ; τL < φ < τH “up′′

SPH −
(

SPH−SPL
τL−τH

)
(φ− τL) ; τL < φ < τH “down′′

(17)

In this mode, if the state variable falls outside the trigger window, then
the constant set point value is returned.
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6.1.4 Binary Switch Plus Linear Interpolated SetPoint

It is possible to combine the behaviors of the binary switch and linear in-
terpolation to achieve a composite setpoint control function as shown in
Figure 9.
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Figure 9: Binary & Linear Interpolation Set Point Control

6.1.5 SetPoint Function Control

The trigger token controls whether or not the setpoint controller considers
the trigger values in computing the setpoint control values. If the setting is
trigger="off" (the default), the trigger values and low and high setpoint
values are ignored, the setpoint value is always returned. If the setting is
trigger="on", the response is that of the binary switch, linear interpolated
section, or both, depending on the value of the window token.

The window token is used to control the setpoint response function as ei-
ther a binary switch, linear interpolated section, or both. The corresponding
assignments to this token are:

1. Binary Switch: window="outside"
2. Linear Interpolation: window="inside"
3. Binary & Linear Interpolation: window="all"

The default value is: window="all".
The token step controls the abscissa transition behavior of the trigger

functions. If step="up" (the default) a step-up behavior is returned. If
step="down" a step-down behavior is returned.

24



The control attribute can be used to deactivate the controller. If the
value of control is set to any value other than “on”, the controller will be
deactivated. This means that the control output will be forced to a value
of 1, no control output variations will occur. Since the control outputs
are applied as amplitude modulation factors to the watermover flow, the
watermover flow will default to it’s uncontrolled values.

6.2 SetPoint XML

The controller environments available for the SetPoint controller are shown
in Table 6.2.

environment attribute meaning
<setpointctrl> SetPoint controller definition

cid positive (cid>0) controller id
label optional controller label
wmID ID of watermover to be controlled
control ’on’ or ’off’
trigger ’on’ or ’off’
window ’outside’, ’inside’ or ’all’
step ’up’ or ’down’
setpoint constant setpoint value
setlow low setpoint value
sethigh high setpoint value
triglow low trigger value
trighigh high trigger value

<*monitor> State variable specification

Table 6.2. Setpoint Controller XML

The following example illustrates a SetPoint controller applied to a wa-
termover.

<controller id="1">
<setpointctrl cid="101" label="SPCtrl 1:" wmID="1"
window="all" setpoint="495.0" setlow="0.0" sethigh="1.0"
triglow="505.0" trighigh="506.0" trigger="on" step="down">
<segmentmonitor id="1" attr="head"></segmentmonitor>

</setpointctrl>
</controller>
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A full example of the Setpoint controller applied in a RSM test case is
shown in 15.5.
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7 Fuzzy Controller

The RSM incorporates a generic, multi-variate, fuzzy controller through ac-
cess to the Fuzzy Control Library [3]. The Fuzzy Control Library is a C++
implementation of a generic fuzzy controller based on the Fuzzy Control Lan-
guage (FCL) as defined by the International Electrotechnical Commission
(IEC) standard for Fuzzy Control Programming [4]. This standard defines
nomenclature and methodology for the application of rule-based linguistic
(fuzzy) control modules.

Fuzzy control has significant advantages over canonical control struc-
tures in cases where the system is nonlinear and/or has no closed form
transfer function representation. Another inherent strength of fuzzy con-
trol is its ability to generate outputs based on inferencing of multi-inputs
which are constrained by multiple, and possibly overlapping boundary con-
ditions. Fuzzy control is essentially an expert system which relies upon a
rule-base to define the variable control constraints. The user must also de-
fine input/output fuzzy membership functions which effect the inferencing
and constraint application.

7.1 Fuzzy Control Implementation

The fuzzy controller requires an input FCL file which specifies the input/output
variables, fuzzy membership functions, and rule-base. Refer to the FCL
Standard [4] for nomenclature, descriptions and examples of FCL files. In
addition to the FCL file, XML attributes specific to the fuzzy controller
are also required to establish input/output variable definitions in relation to
RSM watermover monitors. Valid attributes are shown in Table 7.4. The
fuzzy controller is implemented through application programming interface
function calls to the Fuzzy Control Library [3].
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7.2 Fuzzy Control Input/Output Terms

The ability for input and output logical decision variables to cover a range
of values rather than just true or false is a central advantage of fuzzy logic
compared to boolean logic. Assignment of the degree of membership (µ)
to an input or output data value (χ) is performed in the fuzzification or
defuzzification of input or output terms. In the fuzzy controller there are
five input/output terms available for fuzzification and defuzzification:

1. Ramp
2. Triangle
3. Trapezoid
4. Rectangle
5. Singleton

Figure 10 depicts each of the fuzzy terms, each term is described below.

Figure 10: Available fuzzy terms
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7.2.1 Ramp Term

The ramp term is used at the edges of an input/output variable domain.
This term is defined in the FCL file by two (χ, µ) points. The first ramp in
figure 10 would be defined as:

TERM ramp1 := (4, 0.6) (7, 0);

All data values (χ) which fall in the range χ < 4, will be assigned µ=0.6.
Data values which fall in the range χ > 7 will not be classified as a ramp1
term. This means that if χ > 7, then a fuzzy rule of the form

IF inputVar IS ramp1 THEN ouputVar IS low;

will be off (i.e. the output membership value of the ouputVar term low will
be zero.) The last ramp term in figure 10 would be defined as:

TERM ramp2 := (18, 0) (21, 0.6);

All data values (χ) which fall in the range χ > 21, will be assigned µ=0.6.

7.2.2 Triangle Term

The triangle term requires three (χ, µ) points. The triangle term shown in
figure 10 is defined by:

TERM triangle := (3, 0) (6, 0.8) (10, 0);

All data values which fall outside of the interval 3 < χ < 10 will not be
classified as a triangle term (i.e. the triangle term membership value will be
zero for that fuzzy variable.)

7.2.3 Trapezoid Term

A trapezoid term is one of the most frequently used fuzzy input/output
terms. A trapezoid requires four (χ, µ) points. To qualify as a trapezoid,
the ordinates of the 1st & 2nd, and 3rd & 4th points cannot be the same
value. The trapezoid term of figure 10 is defined by:

TERM trapezoid := (6, 0) (9, 1) (15, 1) (18, 0);
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7.2.4 Rectangle Term

The rectangle term is typically not used in fuzzy logic, as it precludes the
smooth transition of variable membership from one term to another. It can
however be useful in cases where an on/off behavior is desired. The rectangle
term requires four (χ, µ) points. The rectangle term shown in figure 10 is
defined by:

TERM rectangle := (12, 0) (12, 0.8) (20, 0.8) (20, 0);

To qualify as a rectangle, the ordinates of the 1st & 2nd, and 3rd & 4th
points must be the same value.

7.2.5 Singleton Term

The singleton is not a true fuzzy logic term. It does not classify an input
term based on the range of the data, and does not provide a center-of-
mass or other inference output value for output terms. Rather, it simply
assigns a data value to a term. This can be useful in isolating behavioral
problems of the fuzzy controller, or in cases where precise control of output
variables is desired. The singleton does not require a (χ, µ) point, but
just specifies the data value χ. It is therefore misleading to interpret the
singleton term shown in figure 10 as being associated with an input/output
data value χ. See the example of the fuzzy controller in section 15.7 for
a demonstration. Notwithstanding the crisp nature of the singleton terms,
the user must realize that if multiple singleton terms are active as a result
of rule validation, the singleton values will be still be subjected to the fuzzy
inferencing processes of aggregation, activation and accumulation, thereby
resulting in a variable value that may not match any of the singleton values.
A valid FCL invocation of a singleton term would be:

TERM singleton := 23;

7.3 FCL Syntax Validation

Included in the RSM distribution is a program for checking the syntax
and validity of an FCL file without having to run the RSM. The program
fcl_valid is in the fcl_lib directory. This program will read a FCL file
as input, parse the FCL file, create an input variable map, output variable
map, and rule map exactly as is done in the RSM fuzzy controller. Any
FCL syntax errors, or errors in creation of the input/output/rule maps will
be detected and printed to the output. The usage of the program is:
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fcl_valid controller.fcl

where controller.fcl is the name of the fuzzy controller FCL definition
file. Note that this program cannot check the input and output variable
linkage between the FCL file and the XML controller definition files.

An example of fcl_valid is shown below. The FCL file to which
fcl_valid is applied is:

// S8

// 1) IF stage in Miami Canal > 12.5 ft AND not enough

// gravity flow through the spillway from low WCA3, pump on

FUNCTION_BLOCK S8

VAR_INPUT

Miami_Canal_Stage : REAL;

END_VAR

VAR_OUTPUT

S8_Pump : REAL;

END_VAR

FUZZIFY Miami_Canal_Stage

TERM low := (9, 1) (10, 0);

TERM medium := (9, 0) (10, 1) (12, 1) (13, 0);

TERM high := (12.5, 0) (13, 1);

END_FUZZIFY

DEFUZZIFY S8_Pump

// All outputs are singletons

TERM off := 0.;

TERM qtr_on := 0.25;

TERM half_on := 0.5;

TERM 3qtr_on := 0.75;

TERM on := 1.;

ACCU: MAX;

METHOD: COG;

DEFAULT:= 0;

RANGE:= (0, 1);

END_DEFUZZIFY

RULEBLOCK No1

AND : MIN;

OR : MAX;

ACT : MIN;

RULE 1: IF Miami_Canal_Stage IS high

THEN S8_Pump IS on;

RULE 2: IF Miami_Canal_Stage IS low OR Miami_Canal_Stage IS medium

THEN S8_Pump IS off;

END_RULEBLOCK

END_FUNCTION_BLOCK
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The corresponding output from fcl_valid is shown below:

[linuxserv1] lec> fcl_valid S8.fcl

-> : fcl_valid() Start : (0)

->InputVariables Map

================================================

FuzzyInputClass: Miami_Canal_Stage varName: Miami_Canal_Stage varType: REAL

FuzzyInputTerm: high

varName: Miami_Canal_Stage termName: high termType: Ramp

(12.5, 0) (13, 1)

FuzzyInputTerm: low

varName: Miami_Canal_Stage termName: low termType: Ramp

(9, 1) (10, 0)

FuzzyInputTerm: medium

varName: Miami_Canal_Stage termName: medium termType: Trapezoid

(9, 0) (10, 1) (12, 1) (13, 0)

================================================

<-InputVariables Map

->OutputVariables Map

================================================

FuzzyOutputClass: S8_Pump varName: S8_Pump varType: REAL

ACCU: MAX METHOD: COG DEFAULT: 0 RANGE: (0, 1)

FuzzyOutputTerm: 3qtr_on

varName: S8_Pump termName: 3qtr_on termType: Singleton

singleton: 0.75, 0

FuzzyOutputTerm: half_on

varName: S8_Pump termName: half_on termType: Singleton

singleton: 0.5, 0

FuzzyOutputTerm: off

varName: S8_Pump termName: off termType: Singleton

singleton: 0, 0

FuzzyOutputTerm: on

varName: S8_Pump termName: on termType: Singleton

singleton: 1, 0

FuzzyOutputTerm: qtr_on

varName: S8_Pump termName: qtr_on termType: Singleton

singleton: 0.25, 0

32



================================================

<-OutputVariables Map

->Rules Map

================================================

FuzzyRuleClass: 1 ruleName: 1

AND: MIN OR: MAX ACT METHOD: MIN

Conditions:

AND SubCondition: InputVar: Miami_Canal_Stage InputTerm: high

Conclusions:

Conclusion: OutputVar: S8_Pump OutputTerm: on weight: 1

FuzzyRuleClass: 2 ruleName: 2

AND: MIN OR: MAX ACT METHOD: MIN

Conditions:

OR SubCondition: InputVar: Miami_Canal_Stage InputTerm: low

OR SubCondition: InputVar: Miami_Canal_Stage InputTerm: medium

Conclusions:

Conclusion: OutputVar: S8_Pump OutputTerm: off weight: 1

================================================

<-Rules Map

<- : fcl_valid() Complete. : (0)
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7.4 Fuzzy Control XML

The controller environments available for the Fuzzy controller are shown in
Table 7.4.

environment attribute meaning
<fuzctrl> Fuzzy controller definition

cid positive (cid>0) controller id
label optional controller label
wmID ID of watermover to be controlled
control ’on’ or ’off’
fcl name of FCL file

<varIn> input variable(s)
name input variable name
monitor monitor specification
monID monitor ID
monType monitor type

<varOut> output variable
name output variable name

<target> Target state specification (optional)
<*monitor> State variable specification

Table 7.4. Fuzzy Controller XML

The control attribute can be used to deactivate the controller. If the
value of control is set to any value other than “on”, the controller will be
deactivated. This means that the control output will be forced to a value
of 1, no control output variations will occur. Since the control outputs are
applied as amplitude modulation factors to the watermover flow, the water-
mover flow will default to it’s uncontrolled values.

The fcl attribute must evaluate to a valid Fuzzy Control Language
(FCL) file specification. The varIn environment and attributes will link
the HSE state values (via monitors) to the controller input variables. The
<varIn> name= attribute must correspond to a VAR_INPUT defined in the
specified FCL file. The monitor, monID and monType attributes must match
that of the monitor defined in the controller section.

The <varOut> argument must correspond to a VAR_OUTPUT variable spec-
ified in the FCL file. The *monitor definition (in this case a segmentmonitor)
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will link the RSM input state variable to the <varIn> argument as described
above.

The following example illustrates a single input Fuzzy controller applied
to a watermover.

<controller id="1">
<!-- Controller for discharge from segment 1 -->
<fuzctrl cid="101" wmID="1" fcl="hq1.fcl" label="fcl1"
<varIn name="segment1Head" monitor="segmentmonitor"
monID="1" monType="head"> </varIn>

<varOut name="control1Out"> </varOut>
<segmentmonitor id="1" attr="head"></segmentmonitor>

</fuzctrl>
<!-- Controller for pumping into segment 4 -->
<fuzctrl cid="102" wmID="2" fcl="hq1.fcl" label="fcl2"
<varIn name="segment4Head"monitor="segmentmonitor"
monID="4" monType="head"> </varIn>

<varOut name="control1Out"> </varOut>
<segmentmonitor id="4" attr="head"></segmentmonitor>

</fuzctrl>
</controller>
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The following example illustrates a dual input Fuzzy controller applied
to a watermover. The <varIn> arguments must correspond to VAR_INPUT
variables defined in the specified FCL file. The <varIn> argument is a list of
input variables, where each input variable specification also defines the RSM
state variable monitor information for that input variable. This information
is required to establish correct input variable state information links to the
fuzzy input variables. The monitor, monID and monType attributes must
match that of a monitor defined in the controller section.

The varOut argument must correspond to a VAR_OUTPUT variable speci-
fied in the FCL file. The *monitor definitions (in this case segmentmonitor)
will link the RSM input state variables to the <varIn> arguments.

<controller id="1">
<!-- Controller for discharge from segment 1 -->
<fuzctrl cid="101" wmID="1" fcl="hq1.fcl" label="fcl1"
<varIn name="segment1Head" monitor="segmentmonitor"
monID="1" monType="head"> </varIn>

<varIn name="segment2Head" monitor="segmentmonitor"
monID="2" monType="head"> </varIn>

<varOut name="control1Out"> </varOut>
<segmentmonitor id="1" attr="head"></segmentmonitor>
<segmentmonitor id="2" attr="head"></segmentmonitor>

</fuzctrl>
<!-- Controller for pumping into segment 4 -->
<fuzctrl cid="102" wmID="2" fcl="hq1.fcl" label="fcl2"
<varIn name="segment3Head" monitor="segmentmonitor"
monID="3" monType="head"> </varIn>

<varIn name="segment4Head" monitor="segmentmonitor"
monID="4" monType="head"> </varIn>

<varOut name="control1Out"></varOut>
<segmentmonitor id="3" attr="head"></segmentmonitor>
<segmentmonitor id="4" attr="head"></segmentmonitor>

</fuzctrl>
</controller>

Examples of the fuzzy controller can be found in section 15.7.
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8 User Controller

The user controller provides a facility for the user to independently develop
a control algorithm applied to a watermover. The user develops a control
algorithm in C/C++, then compiles the control routine(s) into a shared
object library. The <userctrl> implements a shared-library loader and
function pointer interface which calls the user-defined control function(s) at
each timestep. Each <userctrl> will maintain it’s own shared object and
function pointer information, allowing the user to define multiple control
functions inside a single shared object so that individual controllers may be
enacted by selected functions which reside inside a single shared object. It is
also possible to define separate shared objects for each controller. The user
defined functions can take advantage of several RSM application program-
ming interface (API) functions to assist in accessing input state variables
and setting output values.

8.1 Implementation

Implementation of the user controller is dependent upon the creation of a
shared object file that contains the control logic function for each controller.
Each function must return a double floating point value, assumed to be in
the interval [0,1], which is used to amplitude modulate the flow of the wa-
termover. User defined controller and supervisor shared-object codes must
include the file mseIO.h.

8.2 User Controller XML

The controller XML environments available for the User controller are shown
in Table 8.2.
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environment attribute meaning
<userctrl> user controller definition

cid positive (cid>0) controller id
label optional controller label
wmID ID of watermover to be controlled
module name of shared library
func name of the function
libType type of shared object (C, C++)
control ’on’ or ’off’
ctrlMin minimum control output value
ctrlMax maximum control output value

<varIn> input variable(s)
name input variable name
source ”monitor”, ”xml”
monitor monitor specification
monID monitor ID
monType monitor type

<*monitor> State variable specification

Table 8.2. User Controller XML

The control attribute can be used to deactivate the controller. If the
value of control is set to any value other than “on”, the controller will be
deactivated. This means that the control output will be forced to a value
of 1, no control output variations will occur. Since the control outputs are
applied as amplitude modulation factors to the watermover flow, the water-
mover flow will default to it’s uncontrolled values.

The <varIn> environments define the state input(s) and provide a link
between the inputs defined in the XML file and the RSM state variables.
The name= argument defines a key which is used in the user-defined function
code to access input state variable. Each <varIn> entry can have one of two
source= attributes, indicating the source of the data input: "monitor" or
"xml". The default is source="monitor" in which case the varIn will have
an associated <*monitor> (i.e. <segmentmonitor>) entry. The monitor=,
monID= and monType= attributes must match the attributes of the associated
state <*monitor>. For example, the following are valid XML entries for a
varIn and monitor pair:
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<varIn name="Segment1" monitor="segmentmonitor"
monID="1" monType="head"></varIn>

<segmentmonitor id="1" attr="head"></segmentmonitor>

It is also possible to define ’static’ input variables directly in the XML
specification of the varIn, in this case source="xml", as described in section
8.9.1. The user can also obtain input variables from objects of the MSE
Network (see section 14, if one is defined, through the use of API functions
(sections 8.10.8-8.10.13). Examples of this usage are presented in section
8.9.2.

The following example illustrates a User controller applied to a water-
mover.

<controller id="1">
<!-- Controller for discharge from segment 1 -->
<userctrl cid="101" label="Segment 1 Ctrl " wmID="1" libType="C++"

module="./UserCtrl.so" func="Segment1_Control" >
<varIn name="Segment1" monitor="segmentmonitor"

monID="1" monType="head"></varIn>
<varIn name="Segment4" monitor="segmentmonitor"

monID="4" monType="head"></varIn>
<segmentmonitor id="1" attr="head"></segmentmonitor>
<segmentmonitor id="4" attr="head"></segmentmonitor>

</userctrl>
</controller>

In this example the shared object named UserCtrl.so (module="./UserCtrl.so")
is loaded from the current directory to call the control function named as
func="Segment1_Control". This function will receive two state input val-
ues named Segment1 and Segment4. The state variables will reside in an
InputState C++ map, with keys Segment1 and Segment4, used to access
pointers to InputState data structures, which contain the stateIn variable.
The stateIn values will be assigned from the appropriate segmentmonitor
at each time step, prior to calling the control function.

An example of a user controller applied in an RSM test case can be found
in section 15.8.

8.3 User Controller Library Compilation

To convert the above C++ code into a shared object with the name UserC-
trl.so, assuming that the function is in a file named userctrl.cc, the following
command can be used in Linux:
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gcc userctrl.cc -Bsymbolic -shared -o UserCtrl.so

8.4 User Controller Initialization and Cleanup

If the user desires to have a one-time initialization call, and one-time cleanup
call made to the library at the time the library is loaded and unloaded
respectively, the user must define two functions within the library:

1. void _init() { };

2. void _fini() { };

The _init() function will be called after the shared library loader suc-
cessfully imports the shared library, and the _fini() function will be called
before the library is unloaded. To prevent linkage conflicts with common
standard library functions, add the -nostdlib argument to the command:

gcc userctrl.cc -Bsymbolic -shared -o UserCtrl.so -nostdlib

8.5 User Controller and Statically Linked HSE

The current version of RSM does not support user defined controllers de-
veloped in C++ if the RSM is statically linked. If the RSM is dynamically
linked, then C++ user defined shared libraries are supported.

8.6 No Input State Variables (varIn)

In the event that a user defined controller does not have any input state
variables, or if the controller is being used as an interface from a supervisor
which is continually overriding the control output, then the varIn input
should have the name attribute set to "none". In these cases an input data
monitor is not created for the controller. As an example:

<userctrl cid="101" wmID="1" control="on"
module="./spvr_test_ctrl.so" func="Dummy_Control" >

<varIn name="none"></varIn>
</userctrl>
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8.7 User Controller Criteria

The following criteria apply to the <userctrl>:

1. Ensure that the location of your library is included in the environment
variable LD_LIBRARY_PATH.

2. The function must include the verb—mseIO.h— header file.

3. The function must include the state_mapIO.cc file to access MSE
API functions.

4. C++ shared library functions must accept a single argument, a pointer
to a C++ STL container: map<string, InputState*>.

5. C shared library functions must accept three input arguments. First
is an integer, the number of variables. Second is an array of character
pointers, each array element listing a variable name. Third is an array
of floating point double pointers, each reference is the current state
of the corresponding variable (with the same array index) listed in the
array of variable names.

6. The function must return a double floating point value, the control
output.

7. The expected range of control output is [0, 1]. The output value is
applied as a multiplier to the watermover flow value.

8. If you compile with a C++ compiler, declare the functions as extern "C"
to avoid name mangling in the shared object.

8.8 C User Controller Interface

If the shared library is developed in C, the controller functions are called
from the MSE with three input variables as shown in the prototype below:

double MyControl( int varInNum,
char **varInNames,
double *varInValues );

Table 8.8. C user control function prototype
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The first argument is an integer which defines the number of input vari-
ables being passed to the function. This corresponds to the number of
<varIn> variables defined in the <userctrl> section of the xml file. The
second argument is an array of character strings. Each array element con-
tains the name of an input variable as defined in the <varIn="name"> section
of the xml file. The third argument is an array of floating point (double)
values, which contain the current numerical values of the state variables.
The array indices of the second and third arguments match on a one-to-one
correspondence. That is, for the variable with the name varInNames[2],
the current state value is contained in varInValues[2].

The return value of the function must be a double precision floating
point value. This value will be applied as the amplitude modulation factor
to the watermover flow.

Use and development of C language user defined controllers and super-
visors is not the recommended method for interfacing with the MSE. It is
highly recommended that all user defined modules be developed in C++,
which provides a more stable and robust interface than is easily possible with
direct pointer access. An example of the C user defined controller interface
is shown below. Note that it is the responsibility of the user to perform in-
put variable validation, and to not execute memory access violations. These
issues are handled implicitly in the C++ interface.

double MyControl( int varInNum,
char **varInNames,
double *varInValues ) {

double controlOut = 0.;

// Validate the input variables
....

// Get input state variables
double h1 = varInValues[0];
double h2 = varInValues[1];

// Provide control function based on input state variables
....
return controlOut;

}
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8.9 C++ User Controller Interface

If the user develops the shared object in C++, then the control function
receives a single input variable which is a pointer to an C++ associative
array (map).

extern "C" double MyControl( map<string, InputState*> *lpISMap );

Table 8.9. C++ user control function prototype

The C++ map pointed to by lpISMap contains pointers to InputState
classes, one pointer for each varIn variable defined in the XML file. The
map key to each pointer is the variable name (varIn="") as defined in the
userctrl section of the XML file. To access an input state variable the
control function calls the GetVarIn() API function as described in section
8.10.2. The definition of the InputState structure can be found in the
C++ source file: mseIO.h, which is a required header file for user defined
controllers.

The return value of the function must be a double precision floating point
value. This value will be applied as the amplitude modulation factor to the
watermover flow. An example of a user defined control function interface is
shown below.

#include <map>
#include "hse/src/mseIO.h"
#include "hse/mse_tools/state_mapIO.cc"

extern "C" double MyControl( map<string, InputState*> *lpISMap ) {
double controlOut = 0.;

// Get input state variables
double h1 = GetVarIn( "MyControl", "Segment1", lpISMap );
double h2 = GetVarIn( "MyControl", "Segment4", lpISMap );

// Provide control function based on input state variables
....
return controlOut;

}
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Input state variable values are assigned at each timestep to each varIn
variable defined in the XML file. Dynamic variables are assigned from a
<*monitor> (cellmonitor, segmentmonitor...) associated with the varIn
variable. See section 15.8 for an example. It is also possible to assign static
input values directly in the input XML as described in section 8.9.1.

8.9.1 C++ User Controller XML Inputs

The C++ user controllers are able to accept static varIn input variables
from XML entries. Three variable formats are supported: scalar, vector, ma-
trix. The scalar is simply a single data value. A vector is a one-dimensional
list of values, and the matrix is a two-dimensional table of columns and
rows. To use this feature the source attribute of the varIn must be as-
signed source="xml". Within the varIn environment one type of XML
input variable may be created as shown below:

<varIn name="xmlScalar" source="xml">
<scalar> -325.43 </scalar>

</varIn>
<varIn name="xmlVector" source="xml">

<vector> -1.2 -3.4 -5.6 -7.8 -9.1 </vector>
</varIn>
<varIn name="xmlMatrix" source="xml">

<matrix> 1.2 3.4 ;
5.6 7.8 ;
9.1 2.3 ;

</matrix>
</varIn>

Vector datamembers are delimited by whitespace. Matrix columns (mem-
bers of a row) are delimited by whitespace. Matrix rows are delineated by
’;’ or ’,’. All vector and matrix indices follow C/C++ semantics: 0 is the
first element. To access these members from a user controller/supervisor,
several interface functions are provided as described in section 8.10.

8.9.2 C++ User Controller MSE Network Inputs

An important source of synoptic state information and water control unit
(WCU) operational criteria can be the MSE Network representation 14. The
C++ controller is capable of accessing WCU and hydraulic structure infor-
mation stored in the MSE Network objects through the use of API functions
described in sections 8.10.8 - 8.10.13. An example of MSE Network inputs
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that receive information from WCU named U1 and from structure node S1
is shown below.

<varIn name="U1_Name" source="mse_network"
mse_unit="U1" unit_attr="name" >

</varIn>
<varIn name="U1_Purpose" source="mse_network"

mse_unit="U1" unit_attr="purpose">
</varIn>
<varIn name="S1_Name" source="mse_network"

mse_node="S1" node_attr="name" >
</varIn>
<varIn name="S1_open" source="mse_network"

mse_node="S1" node_attr="open" >
</varIn>
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8.10 C++ User Controller API functions

The MSE provides several API functions to assist the user in validation
and access of input/output variables between the RSM and the user defined
shared library functions. These functions can be found in the MSE source
code file: mse_tools/state_mapIO.cc. Example usage of these functions is
shown in the benchmark BM45.

8.10.1 GetMseLabel

To access the label assigned to a controller or supervisor in the XML speci-
fication, the user defined function makes a call to the GetMseLabel() func-
tion.

string GetMseLabel(string func,
map<string, InputState*> *lpInputStateMap);

Table 8.10.1. GetMseLabel() function prototype

The function returns a string value corresponding to the label="" as-
signment in the XML. The input arguments are described below.

Name Type Description
func string name of function in

user library calling GetVarIn(),
used for error reporting

lpInputStateMap *map<string, pointer to the InputStateMap
InputState*> passed into the user defined

function

Table 8.10.1. GetMseLabel() function arguments

The invocation of the GetMseLabel() function from the user defined
controller shared library function would be:
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extern "C" double MyControl( map<string, InputState*> *lpISMap ) {

string controllerLabel = GetMseLabel( "MyControl", lpISMap );

// Provide control function based on input state variable
....
return controlOut;

}
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8.10.2 GetVarIn

To access a monitor input state variable defined in the varIn environment
of a controller or supervisor, the user defined function makes a call to the
GetVarIn() function.

double GetVarIn(string func,
string varInName,
map<string, InputState*> *lpInputStateMap);

Table 8.10.2. GetVarIn() function prototype

The function returns a double precision floating point value correspond-
ing to the current state value of the varIn input variable with the name
varInName. The input arguments are described below.

Name Type Description
func string name of function in

user library calling GetVarIn(),
used for error reporting

varInName string name of the input variable
assigned in XML varIn

lpInputStateMap *map<string, pointer to the InputStateMap
InputState*> passed into the user defined

function

Table 8.10.2. GetVarIn() function arguments

The first function argument func is a string data type that should con-
tain the name of the function which calls the GetXML*In() function. This
is used for error reporting in the event that one of the access functions fails.
The second argument is a string corresponding to the <varIn name=""> at-
tribute of the desired input variable. The last argument is a pointer to the
inputStateMap that was passed into the user control function by the MSE
function call handler.

An example user defined controller input XML section is shown below:
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<userctrl cid="101" label="MyControl" wmID="1" control="on"
module="./UserCtrl.so" func="MyControl" >

<varIn name="Segment4" monitor="segmentmonitor"
monID="4" monType="head">

</varIn>
<segmentmonitor id="4" attr="head"></segmentmonitor>

</userctrl>

The corresponding invocation of the GetVarIn() function from the user
defined controller shared library function would be:

extern "C" double MyControl( map<string, InputState*> *lpISMap ) {

double canalHead = GetVarIn( "MyControl", "Segment4", lpISMap );

// Provide control function based on input state variable
....
return controlOut;

}
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8.10.3 XMLScalarValue

To access a scalar value defined in an input XML as shown in section 8.9.1,
the user defined function makes a call to the XMLScalarValue() function.

double XMLScalarValue(string func,
string varInName,
map<string, InputState*> *lpInputStateMap);

Table 8.10.3. XMLScalarValue() function prototype

The function returns a double precision floating point value correspond-
ing to the value of the <varIn> <scalar> input variable with the name
varInName. The input arguments are described below.

Name Type Description
func string name of function in

user library calling
XMLScalarValue(), used
for error reporting

varInName string name of the <scalar> input
variable assigned in XML varIn

lpInputStateMap *map<string, pointer to the InputStateMap
InputState*> passed into the user defined

function

Table 8.10.3. XMLScalarValue() function arguments

An example user defined controller input XML section is shown below:

<userctrl cid="101" label="MyControl" wmID="1" control="on"
module="./UserCtrl.so" func="MyControl" >

<varIn name="xmlScalar" source="xml">
<scalar> -325.43 </scalar>

</varIn>
</userctrl>

The corresponding invocation of the XMLScalarValue() function from
the user defined controller shared library function would be:
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extern "C" double MyControl( map<string, InputState*> *lpISMap ) {

double scalar = XMLScalarValue( "MyControl";, "xmlScalar", lpISMap );
....
return controlOut;

}
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8.10.4 XMLVector

To access the C++ STL vector container which holds input XML <vector>values
as shown in section 8.9.1, the user defined function makes a call to the
XMLVector() function.

vector <double>
* XMLVector(string func,

string varInName,
map<string, InputState*> *lpInputStateMap);

Table 8.10.4. XMLVector() function prototype

The function returns a pointer to an STL container of type vector <double>,
a vector of double precision floating point values corresponding to the <varIn> <vector>
input variable with the name varInName. The input arguments are described
below.

Name Type Description
func string name of function in

user library calling
XMLVector(), used
for error reporting

varInName string name of the <vector> input
variable assigned in XML varIn

lpInputStateMap *map<string, pointer to the InputStateMap
InputState*> passed into the user defined

function

Table 8.10.4. XMLVector() function arguments

An example user defined controller input XML section is shown below:

<userctrl cid="101" label="MyControl" wmID="1" control="on"
module="./UserCtrl.so" func="MyControl" >

<varIn name="xmlVector" source="xml">
<vector> -1.2 -3.4 -5.6 -7.8 -9.1 </vector>

</varIn>
</userctrl>
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The corresponding invocation of the XMLVector() function from the user
defined controller shared library function would be:

extern "C" double MyControl( map<string, InputState*> *lpISMap ) {
string func = "MyControl";

vector <double> *xmlVector = XMLVector( func, "xmlVector", lpISMap );
....
return controlOut;

}

Important: Since this function returns a pointer to an STL container,
the user must exercise caution in accessing offset values referenced to the
pointer. C++ provides checked access for the vector STL container via the
at() member function. To access element i of the xmlVector:

if (xmlVector) { value = xmlVector->at(i); }

53



8.10.5 XMLMatrix

To access the C++ STL vector container which holds input XML <matrix>
values as shown in section 8.9.1, the user defined function makes a call to
the XMLMatrix() function.

vector<vector<double>>
*XMLMatrix(string func,

string varInName,
map<string, InputState*> *lpInputStateMap);

Table 8.10.5. XMLMatrix() function prototype

The function returns a pointer to an STL container of type vector<vector <double>>,
a vector of vectors of double precision floating point values corresponding
to the <varIn> <matrix> input variable with the name varInName. The
input arguments are described below.

Name Type Description
func string name of function in

user library calling
XMLMatrix(), used
for error reporting

varInName string name of the <matrix> input
variable assigned in XML varIn

lpInputStateMap *map<string, pointer to the InputStateMap
InputState*> passed into the user defined

function

Table 8.10.5. XMLMatrix() function arguments

An example user defined controller input XML section is shown below:

<userctrl cid="101" label="MyControl" wmID="1" control="on"
module="./UserCtrl.so" func="MyControl" >

<varIn name="xmlMatrix" source="xml">
<matrix> 1.2 3.4 5.6 7.8 ;

-1.2 -3.4 -5.6 -7.8 ;
9.1 2.3 4.5 6.7 ;

</matrix>
</varIn>

</userctrl>
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The corresponding invocation of the XMLMatrix() function from the user
defined controller shared library function would be:

extern "C" double MyControl( map<string, InputState*> *lpISMap ) {
string func = "MyControl";

vector< vector<double> > *xmlMatrix = XMLMatrix( func,
"xmlMatrix",
lpISMap );

....
return controlOut;

}

Important: Since this function returns a pointer to an STL container,
the user must exercise caution in accessing offset values referenced to the
pointer. C++ provides checked access for the vector STL container via the
at() member function. To access element i, j of the xmlMatrix:

if (xmlMatrix) { value = xmlMatrix->at(i).at(j); }
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8.10.6 XMLVectorValue

To access a single element of a <varIn> <vector> value defined in an input
XML as shown in section 8.9.1, the user defined function makes a call to the
XMLVectorValue() function. This is safer than accessing the STL vector
directly by a pointer and offset, since the offset validation is done by the
XMLVectorValue() function.

double XMLVectorValue(string func,
string varInName,
int i,
map<string, InputState*> *lpInputStateMap);

Table 8.10.6. XMLVectorValue() function prototype

The function returns a double precision floating point value correspond-
ing to the value of the ith element of the <varIn> <vector> input variable
with the name varInName. The input arguments are described below.

Name Type Description
func string name of function in

user library calling
XMLVectorValue(), used
for error reporting

varInName string name of the <scalar> input
variable assigned in XML varIn

i int 0 based offset of element
lpInputStateMap *map<string, pointer to the InputStateMap

InputState*> passed into the user defined
function

Table 8.10.6. XMLVectorValue() function arguments

In the XMLVectorValue() function, the third argument is the (zero-
offset) element number of a vector element. If invalid indices are specified
the function will return a value of 0 and print an error message to cerr. An
example user defined controller input XML section is shown below:
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<userctrl cid="101" label="MyControl" wmID="1" control="on"
module="./UserCtrl.so" func="MyControl" >

<varIn name="xmlVector" source="xml">
<vector> -1.2 -3.4 -5.6 -7.8 -9.1 </vector>

</varIn>
</userctrl>

The corresponding invocation of the XMLVectorValue() function from
the user defined controller shared library function would be:

extern "C" double MyControl( map<string, InputState*> *lpISMap ) {
string func = "MyControl";

double vectorVal = XMLVectorValue( func, "xmlVector", 2, lpISMap );
....
return controlOut;

}

The function call above would return the value of -5.6.
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8.10.7 XMLMatrixValue

To access a single element of a <varIn> <matrix> value defined in an input
XML as shown in section 8.9.1, the user defined function makes a call to the
XMLMatrixValue() function. This is safer than accessing the STL vector
directly by a pointer and offset, since the offset validation is done by the
XMLMatrixValue() function.

double XMLMatrixValue(string func,
string varInName,
int row,
int col,
map<string, InputState*> *lpInputStateMap);

Table 8.10.7. XMLMatrixValue() function prototype

The function returns a double precision floating point value correspond-
ing to the value of the element at the row, col of the <varIn> <matrix>
input variable with the name varInName. The input arguments are described
below.

Name Type Description
func string name of function in

user library calling
XMLMatrixValue(), used
for error reporting

varInName string name of the <scalar> input
variable assigned in XML varIn

row int 0 based offset of
element row

col int 0 based offset of
element column

lpInputStateMap *map<string, pointer to the InputStateMap
InputState*> passed into the user defined

function

Table 8.10.7. XMLMatrixValue() function arguments

In the XMLMatrixValue() function, the third and fourth arguments of
the function are indices corresponding to the (zero-offset) row and column
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of the data in the ¡matrix¿ subnodes. If invalid indices are specified the
function will return a value of 0 and print an error message to cerr. An
example user defined controller input XML section is shown below:

<userctrl cid="101" label="MyControl" wmID="1" control="on"
module="./UserCtrl.so" func="MyControl" >

<varIn name="xmlMatrix" source="xml">
<matrix> 1.2 3.4 5.6 7.8 ;

-1.2 -3.4 -5.6 -7.8 ;
9.1 2.3 4.5 6.7 ;

</matrix>
</varIn>

</userctrl>

The corresponding invocation of the XMLMatrixValue() function from
the user defined controller shared library function would be:

extern "C" double MyControl( map<string, InputState*> *lpISMap ) {
string func = "MyControl";

double matrixVal = XMLMatrixValue( func, "xmlMatrix", 2, 3, lpISMap );
....
return controlOut;

}

The function call above would return the value of 6.7.

59



8.10.8 GetMSEUnitVal

To access a numeric data object in the MSE Network that is associated with
a <mse_unit> (water control unit), the user defined function makes a call
to the GetMSEUnitVal() function.

double GetMSEUnitVal(string func,
string varInName,
map<string, InputState*> *lpInputStateMap);

Table 8.10.8. GetMSEUnitVal() function prototype

The function returns a double precision floating point value correspond-
ing to the value of an MSE Network data object attribute of a <mse_unit>.
The attribute of the <mse_unit> is specified with the unit_attr.

Name Type Description
func string name of function in

user library calling
GetMSEUnitVal(), used
for error reporting

varInName string name of the varIn input
variable holding the mse_unit
and mse_attr

lpInputStateMap *map<string, pointer to the InputStateMap
InputState*> passed into the user defined

function

Table 8.10.8. GetMSEUnitVal() function arguments

An example of <varIn> XML entries which access mse_unit values from
the MSE Network are shown below.
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<varIn name="WCU1_Maint" source="mse_network"
mse_unit="WCU1" unit_attr="maintLevel" >

</varIn>
<varIn name="WCU1_Local" source="mse_network"

mse_unit="WCU1" unit_attr="localLevel" >
</varIn>
<varIn name="WCU1_Purpose" source="mse_network"

mse_unit="WCU1" unit_attr="purpose">
</varIn>

A corresponding entry in the MSE Network XML file for this mse_unit
could be as follows.

<mse_unit name="WCU1" purpose="3">
<unit_arcs> "Reach_1" "Reach_1S" "Reach_1E" </unit_arcs>
<maintLevel name="maint"> <const value="5.5"> </const> </maintLevel>
<localLevel name="local"> <const value="5.2"> </const> </localLevel>
<inlet name="S11 to Reach1"> "S11" </inlet>
<outlet name="Reach1 to S11_A" > "S11_A" </outlet>

</mse_unit>

In this example three input variables are passed into the controller from
the mse_unit WCU1 corresponding with the MSE water control unit data
objects maintLevel, localLevel and purpose. The user defined function
calls to access these input variables are shown below.

extern "C" double MyControl( map<string, InputState*> *lpISMap ) {
string func = "MyControl";

double WCU1_Maint = GetMSEUnitVal( func, "WCU1_Maint", lpISMap );
double WCU1_Local = GetMSEUnitVal( func, "WCU1_Local", lpISMap );
double WCU1_Purp = GetMSEUnitVal( func, "WCU1_Purpose", lpISMap );
....
return controlOut;

}

In the above example, the value returned into WCU1_Maint will be 5.5,
WCU1_Local will be 5.2, and WCU1_Purp will be 3.
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8.10.9 GetMSEUnitString

To access a string data object in the MSE Network that is associated with
a <mse_unit> (water control unit), the user defined function makes a call
to the GetMSEUnitString() function.

string GetMSEUnitString(string func,
string varInName,
map<string, InputState*> *lpInputStateMap);

Table 8.10.9. GetMSEUnitString() function prototype

The function returns a C++ string type corresponding to the value of
an attribute of the <mse_unit> that is specified in the controller <varIn>
attribute unit_attr.

Name Type Description
func string name of function in

user library calling
GetMSEUnitString(), used
for error reporting

varInName string name of the varIn input
variable holding the mse_unit
and mse_attr

lpInputStateMap *map<string, pointer to the InputStateMap
InputState*> passed into the user defined

function

Table 8.10.9. GetMSEUnitString() function arguments

An example of <varIn> XML entries which access mse_unit values from
the MSE Network are shown below.

<varIn name="WCU1_Name" source="mse_network" mse_unit="WCU1" unit_attr="name" >
</varIn>
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A corresponding entry in the MSE Network XML file for this mse_unit
could be as follows.

<mse_unit name="WCU1">
<unit_arcs> "Reach_1" "Reach_1S" "Reach_1E" </unit_arcs>

</mse_unit>

In this example the varIn will contain a string holding the name (WCU1).
Currently, this function is of little value, since the name of the mse_unit
must already be known, however, it is maintained for future use where addi-
tional string values may be associated with a mse_unit. An example usage
is shown below.

extern "C" double MyControl( map<string, InputState*> *lpISMap ) {
string func = "MyControl";

string WCU1_Name = GetMSEUnitString( func, "WCU1", lpISMap );
....
return controlOut;

}
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8.10.10 GetMSEArcVal

To access a numeric data object in the MSE Network that is associated with
a <mse_arc>, the user defined function makes a call to the GetMSEArcVal()
function.

double GetMSEArcVal(string func,
string varInName,
map<string, InputState*> *lpInputStateMap);

Table 8.10.10. GetMSEArcVal() function prototype

The function returns a double precision floating point value correspond-
ing to the value of an MSE Network data object attribute of a <mse_arc>.
The attribute of the <mse_arc> is specified with the unit_attr.

Name Type Description
func string name of function in

user library calling
GetMSEArcVal(), used
for error reporting

varInName string name of the varIn input
variable holding the mse_arc
and mse_attr

lpInputStateMap *map<string, pointer to the InputStateMap
InputState*> passed into the user defined

function

Table 8.10.10. GetMSEArcVal() function arguments

An example of <varIn> XML entries which access mse_arc values from
the MSE Network are shown below.

<varIn name="Arc1_Flow" source="mse_network"
mse_arc="Arc1" arc_attr="flow" >

</varIn>
<varIn name="Arc1_Capacity" source="mse_network"

mse_arc="Arc1" arc_attr="capacity">
</varIn>
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A corresponding entry in the MSE Network XML file for this mse_arc
could be as follows.

<mse_arc name="Arc1" capacity="1400">
<hse_arcs> 100 101 102 103 </hse_arcs>
<node_source> "S11" </node_source>
<node_sink> "S11_A" </node_sink>

</mse_arc>

In this example two input variables are passed into the controller from
the mse_arc Arc1 corresponding to the data objects flow and capacity.
The user defined function calls to access these input variables are shown
below.

extern "C" double MyControl( map<string, InputState*> *lpISMap ) {
string func = "MyControl";

double Arc1_Flow = GetMSEArcVal ( func, "Arc1_Flow", lpISMap );
double Arc1_Cap = GetMSEArcVal ( func, "Arc1_Capacity", lpISMap );
....
return controlOut;

}

In the above example, the value returned into Arc1_Capacity will be
1400.
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8.10.11 GetMSEArcString

To access a string data object in the MSE Network that is associated with
a <mse_arc> (water control unit), the user defined function makes a call to
the GetMSEArcString() function.

string GetMSEArcString(string func,
string varInName,
map<string, InputState*> *lpInputStateMap);

Table 8.10.11. GetMSEArcString() function prototype

The function returns a C++ string type corresponding to the value of
an attribute of the <mse_arc> that is specified in the controller <varIn>
attribute unit_attr.

Name Type Description
func string name of function in

user library calling
GetMSEArcString(), used
for error reporting

varInName string name of the varIn input
variable holding the mse_arc
and mse_attr

lpInputStateMap *map<string, pointer to the InputStateMap
InputState*> passed into the user defined

function

Table 8.10.11. GetMSEArcString() function arguments

An example of <varIn> XML entries which access mse_arc values from
the MSE Network are shown below.

<varIn name="Arc1_Name" source="mse_network" mse_arc="Arc1" arc_attr="name" >
</varIn>
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A corresponding entry in the MSE Network XML file for this mse_arc
could be as follows.

<mse_arc name="Arc1" capacity="1400">
<hse_arcs> 100 101 102 103 </hse_arcs>
<node_source> "S11" </node_source>
<node_sink> "S11_A" </node_sink>

</mse_arc>

In this example the varIn will contain a string holding the name (Arc1).
Currently, this function is of little value, since the name of the mse_arc must
already be known, however, it is maintained for future use where additional
string values may be associated with a mse_arc. An example usage is shown
below.

extern "C" double MyControl( map<string, InputState*> *lpISMap ) {
string func = "MyControl";

string Arc1_Name = GetMSEArcString( func, "Arc1", lpISMap );
....
return controlOut;

}
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8.10.12 GetMSENodeVal

To access a numeric data object in the MSE Network that is associated with
a <mse_node>, the user defined function makes a call to the GetMSENodeVal()
function.

double GetMSENodeVal(string func,
string varInName,
map<string, InputState*> *lpInputStateMap);

Table 8.10.12. GetMSENodeVal() function prototype

The function returns a double precision floating point value correspond-
ing to the value of an MSE Network data object attribute of a <mse_node>.
The attribute of the <mse_node> is specified with the unit_attr.

Name Type Description
func string name of function in

user library calling
GetMSENodeVal(), used
for error reporting

varInName string name of the varIn input
variable holding the mse_node
and mse_attr

lpInputStateMap *map<string, pointer to the InputStateMap
InputState*> passed into the user defined

function

Table 8.10.12. GetMSENodeVal() function arguments

An example of <varIn> XML entries which access mse_node values from
the MSE Network are shown below.
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<varIn name="S1_open" source="mse_network"
mse_node="S1" node_attr="open">

</varIn>
<varIn name="S1_close" source="mse_network"

mse_node="S1" node_attr="close">
</varIn>
<varIn name="S1_capacity" source="mse_network"

mse_node="S1" node_attr="capacity">
</varIn>

A corresponding entry in the MSE Network XML file for this mse_node
could be as follows.

<mse_node name="S1" priority="1" purpose="WaterSupply" label="RatedStruct"
designCap="3000." structure="yes" managed="yes"
watermover="S1">

<supply name="S1 Supply"> <const value="100"> </const> </supply>
<open name="S1 Open"> <rc id="2"></rc> </open>
<close name="S1 Close"> <const value="5.5"> </const> </close>

</mse_node>

In this example three input variables are passed into the controller
from the mse_node S1 corresponding to the data objects open, close and
capacity. The user defined function calls to access these input variables
are shown below.

extern "C" double MyControl( map<string, InputState*> *lpISMap ) {
string func = "MyControl";

double S1_open = GetMSENodeVal ( func, "S1_open", lpISMap );
double S1_close = GetMSENodeVal ( func, "S1_close", lpISMap );
double S1_capacity = GetMSENodeVal ( func, "S1_capacity", lpISMap );
....
return controlOut;

}

In the above example, the value returned into S1_close will be 5.5,
the other values will depend on the current state values assigned to the
mse_node object in the MSE Network.
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8.10.13 GetMSENodeString

To access a string data object in the MSE Network that is associated with
a <mse_node> (water control unit), the user defined function makes a call
to the GetMSENodeString() function.

string GetMSENodeString(string func,
string varInName,
map<string, InputState*> *lpInputStateMap);

Table 8.10.13. GetMSENodeString() function prototype

The function returns a C++ string type corresponding to the value of
an attribute of the <mse_node> that is specified in the controller <varIn>
attribute unit_attr.

Name Type Description
func string name of function in

user library calling
GetMSENodeString(), used
for error reporting

varInName string name of the varIn input
variable holding the mse_node
and mse_attr

lpInputStateMap *map<string, pointer to the InputStateMap
InputState*> passed into the user defined

function

Table 8.10.13. GetMSENodeString() function arguments

An example of <varIn> XML entries which access mse_node values from
the MSE Network are shown below.

<varIn name="S1_WM" source="mse_network" mse_node="S1" node_attr="watermover" >
</varIn>
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A corresponding entry in the MSE Network XML file for this mse_node
could be as follows.

<mse_node name="S1" watermover="S1">
<open name="S1 Open"> <rc id="2"></rc> </open>
<close name="S1 Close"> <const value="5.5"> </const> </close>

</mse_node>

The user defined function call to access this input variable is shown be-
low.

extern "C" double MyControl( map<string, InputState*> *lpISMap ) {
string func = "MyControl";

string S1_Watermover = GetMSENodeString( func, "S1", lpISMap );
....
return controlOut;

}

In this example the S1_Watermover will contain a string holding the
name (S1), which was assigned to the mse_node attribute watermover.
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8.11 C++ User Supervisor Interface

Information on the capabilities and usage of MSE supervisors is contained
in the Supervisor’s manual [2]. In order to keep information on the devel-
opment and usage of user defined modules and API functions within one
resource, the user defined supervisory interface is described here.

User defined supervisors must be developed in C++, the supervisor func-
tion receives two input variables which are pointers to an inputStateMap,
and an outputControlMap associative array.

extern "C" int MySupervise( map<string, InputState*> *lpISMap,
map<string, OutputControl*> *lpOCMap );

Table 8.11. C++ user supervisor function prototype

The C++ map pointed to by lpISMap contains pointers to InputState
classes, one pointer for each varIn variable defined in the supervisor XML
file. The map key to each pointer is the variable name (varIn="") as defined
in the userspvr section of the XML file. To access an input state variable
the supervisor function calls the GetVarIn() API function as described in
section 8.10.2. The definition of the InputState structure can be found in
the C++ source file: mseIO.h, which is a required header file.

In an analogous fashion, the C++ map pointed to by lpOCMap contains
pointers to OutputControl classes, one pointer for each varOut variable de-
fined in the supervisor XML file. The map key to each pointer is the variable
name (varOut="") as defined in the userspvr section of the XML file. To
assign an output value the supervisor function calls the SetVarOut() API
function as described in section 8.12.1. The definition of the OutputControl
structure can be found in the C++ source file: mseIO.h.

The C++ supervisors must return an integer value. A return value of
0 indicates no error occurred in the supervisor function. A non-zero return
value indicated that an error occurred in the user supervisor function. In this
case an MseError exception is thrown by the MSE, ending the simulation.

An example of a user defined supervisor function interface is shown be-
low.
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#include <map>
#include "hse/src/mseIO.h"
#include "hse/mse_tools/state_mapIO.cc"

extern "C" int MySupervise( map<string, InputState*> *lpISMap,
map<string, OutputControl*> *lpOCMap ) {

string func = "MySupervise";
double spvrOut1 = 0.;
double spvrOut2 = 0.;

double h1 = GetVarIn( func, "segment1Head", lpISMap );
double h2 = GetVarIn( func, "segment4Head", lpISMap );

// Provide supervsory function based on input state variable
....

// Set the output variables
if ( not SetVarOut( func, "ctrl_101", spvrOut1, lpOCMap ) ) {
return -1;

}
if ( not SetVarOut( func, "ctrl_102", spvrOut2, lpOCMap ) ) {
return -1;

}

return 0;
}

8.12 C++ User Supervisor API functions

Information on the user defined supervisory function API is included in this
section in order to maintain a single API resource.

8.12.1 SetVarOut

To set the value of an output variable from a user defined supervisor, the su-
pervisory function makes a call to the SetVarOut function. The SetVarOut
function is not used with MSE controllers, as the controllers are MISO (multi
input single output) processors. SetVarOut is used only with MSE supervi-
sors to individually set one of the multiple output variables.
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int SetVarOut(string func,
string varOutName,
double controlOut,
map<string, OutputControl*> *lpOutputControlMap );

Table 8.12.1. SetVarOut() function prototype

The function returns an integer value of either 0 (failure) or 1 (success).
The input arguments are described below.

Name Type Description
func string name of function in

user library calling
GetMSENodeVal(), used
for error reporting

varOutName string name of the varOut output
variable

controlOut double numeric output value of
supervisor to varOut

lpOutputControlMap *map<string, pointer to the OutputControlMap
OutputControl*> passed into the user defined

supervisor function

Table 8.12.1. SetVarOut() function arguments

Semantics and usage of the <varOut> XML entries are described in
the MSE Supervisors manual [2], section Output Variables. An example
of <varOut> XML entries from a supervisor are shown below.

<!-- This uses wmID to specify a controller via cid output -->
<varOut wmID="1" func="controller" name="wm1_ctrl"> </varOut>

<!-- This uses ctrlID to set specific controller attributes -->
<varOut ctrlID="102" func="triglow" name="ctrl_102"> </varOut>

A corresponding C++ supervisory function could be written as shown
below.
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extern "C" int MySupervise( map<string, InputState*> *lpISMap,
map<string, OutputControl*> *lpOCMap ) {

string func = "MySupervise";
double spvrOut1 = 0.;
double spvrOut2 = 0.;

// Get input state variables
double h1 = GetVarIn( func, "segment1Head", lpISMap );
double h2 = GetVarIn( func, "segment4Head", lpISMap );

// Provide supervsory function based on input state variable
....

// Set the output variables
if ( not SetVarOut( func, "wm1_ctrl", spvrOut1, lpOCMap ) ) {
return -1;

}
if ( not SetVarOut( func, "ctrl_102", spvrOut2, lpOCMap ) ) {
return -1;

}

return 0;
}

In the above XML section and supervisory function, the output of varOut
with name="ctrl_102" is used to dynamically assign a controller to the wa-
termover with ID wmID="1". The value of the variable spvrOut1 in the
function MySupervise will be converted to an integer, the controller which
has an ID matching the integer value of spvrOut1 will be set as the ac-
tive controller for the watermover with ID wmID="1". The second output,
spvrOut2 will be used to set the "triglow" parameter of the controller with
the controller ID ctrlID="102".
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9 LP Controller

The LP controller (<lpctrl>) is not really a controller. Rather, it provides
an interface to control of a watermover by the GNU Linear Programming Kit
(GLPK) MSE supervisor (<glpk_supervise>). It contains no control algo-
rithm and processes no state information. An example of a valid <lpctrl>
XML entry would be:

<lpctrl cid="107" wmID="7" label="LPCtrl 36"> </lpctrl>

It is required that a GLPK supervisor is controlling the <lpctrl> con-
troller. The supervisor must specify a (<varOut>) output variable which
links the controller to a GLPK model variable. The varOut XML environ-
ment may have one of two func attributes: ControlOut or TargetFlow.
Valid examples of glpk_supervise varOut environments for the lpctrl
shown above are:

<varOut ctrlID="107" func="ControlOut" name="Gain_36"> </varOut>

or

<varOut ctrlID="107" func="TargetFlow" name="TF_36"> </varOut>

Every timestep for which the supervisor is executed, it will update the
specified varOut attribute of the controller. If the varOut attribute is speci-
fied as ControlOut, the supervisor will directly set the controlOut variable
of the controller. The value of controlOut is assumed to be in the range [0,
1], and will directly amplitude modulate the watermover flow value by this
fraction.

Note that the supervisor will in general not run every timestep, while the
controller will. This means that once the LP supervisor sets a controlOut
value for a controller, that value will remain in effect for the controller until
the next invocation of the supervisor.

If the varOut attribute is specified as TargetFlow, the supervisor is
expected to return in it’s output variable (name="TF_36") a target flow value
in CFS for the structure. The controller will then query the watermover for
the maximum available flow that is attainable under the current hydrological
state conditions. Based on the requested target flow, and the maximum
available flow, the controller will then compute a controlOut value in the
range of [0, 1]. The resultant controlOut value will be applied to the
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watermover flow.
Note that the TargetFlow controller will in general compute a differ-

ent controlOut value for each timestep, since it is based on the current
hydrological state, as well as the supervisor specified target flow.

See the MSE Supervisor documentation [2] for a description and exam-
ples of the <lpctrl> controller.

9.1 LP Controller XML

The controller environments available for the LP controller are shown in
Table 9.1.

environment attribute meaning
<lpctrl> LP controller definition

cid positive (cid¿0) controller id
label optional controller label
wmID ID of watermover to be controlled
control ’on’ or ’off’
ctrlMin minimum control output value
ctrlMax maximum control output value

Table 9.1. LP Controller XML

The control attribute can be used to deactivate the controller. If the
value of control is set to any value other than “on”, the controller will be
deactivated. This means that the control output will be forced to a value
of 1, no control output variations will occur. Since the control outputs are
applied as amplitude modulation factors to the watermover flow, the water-
mover flow will default to it’s uncontrolled values.

The following example illustrates a LP controller applied to a water-
mover.

<controller id="1">
<!-- Controller for R1 -->
<lpctrl cid="101" label="FlowCtrl R1" wmID="1"></lpctrl>

</controller>

The <lpctrl> controller will be supervised as shown in the following
RSM XML excerpt:
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<management id="1" label="glpk_supervise">
<glpk_supervise id="801" label="glpk_supervise"
modelFile="glpk_mse.mod" >
<!-- Controllers to be controlled -->
<ctrlID> 101 </ctrlID>
<!-- Output variables to controllers -->
<varOut ctrlID="101" func="ControlOut" name="Gain_R1"> </varOut>
<!-- Input variables to glpk mse from hse -->
<varIn param="PCR1" name="PCR1" monitor="ctrlmonitor"
monID="1" monType="maxflow"> </varIn>
<!-- Monitors from hse to VarIn variables -->
<ctrlmonitor wmID="1" attr="maxflow"></ctrlmonitor>

</glpk_supervise>
</management>

In this example, the GLPK supervisor is setting the control value of
the lpflow controller (ControlOut) with the GLPK model variable named
Gain_R1.
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10 Pre-Simulation Controller Conditioning

Most modern control function implementations employ closed-loop feedback
based on error minimization, as well as dynamic gain and threshold adjust-
ments in response to changing state-variable conditions. As a result, the
initial conditions of the error integrals, error derivatives, and control gains
are important in the initial performance of the controllers. This requires
that a history of state-variable input, and controller response be available
for assessment of the error integrals and controller responses. When histori-
cal data is available, it can be applied in a preconditioning of the controller
state functions. In the case of numerical modeling, it is likely that the his-
torical data is incorporated into the model run itself, or there may not be
any historical data. In such cases, there are two obvious choices available:

1. Run the model for a predetermined number of iterations to “ramp-
up” the controllers, ignore the data outputs generated during these
iterations, then continue to run the model as usual.

2. Run the model for predetermined number of iterations, then reset the
model parameters (excepting the controllers) and restart the model
run.

The first approach essentially throws away the model data generated during
the controller configuration phase. The latter employs a predefined number
of iterations to configure the controllers, then starts the simulation from
timestep zero with the updated controller parameters.

The current controller implementation enacts the second approach. This
is achieved through the use of the preRunType or preRunIterations XML
attributes in the main RSM <control> section of the input specification
file.

The preRunIterations token can be set to an integer number of itera-
tions that the model will execute in a pre-run simulation mode. If this token
is assigned a nonzero value, the model is run for the number of timesteps
specified, during which time the controllers accumulate state-feedback infor-
mation. Once the specified iterations are exhausted, the RSM clock is reset
to the start of the simulation, and all hydrologic matrix values are reset.
The RSM then enters its normal run mode for model execution.
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The preRunType token can be assigned one of three values:

1. controller

2. filter

3. all

Currently, the filter and all values are reserved for future use and have no
effect. If the controller value is set, the RSM will inspect each controller
that is currently defined in the model run, and query the controller for
its value of the number of points required for controller integration. For
example, the PID controller has the parameter nvals for this purpose. The
maximum value obtained from the controller queries is then used as the
number of pre-run simulation iterations to perform.

Note that the preRunIterations token has precedence over the preRunType
settings. The following example illustrates usage of the preRunIterations
control token to enact a pre-run simulation of 110 iterations.

<control
tslen="15"
tstype="minute"
startdate="01jan1994"
starttime="1200"
enddate="05jan1994"
endtime="0600"
alpha="0.500"
solver="PETSC"
method="gmres"
precond="ilu"
preRunIterations="110">

</control>
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11 Global Controller On/Off

Each controller can be individually activated or deactivated with the control
XML attribute in the controller definition section. In cases where multiple
controllers are implemented in a simulation, it may be advantageous to de-
activate all controllers with a single variable. This is the function of the
controllers variable in the <control> section of the XML input file. The
default value is controllers="on". If the value is set to any value other
than "on", all controllers will be deactivated. This means that all control
outputs will be forced to one, no control output variations will occur. Since
the control outputs are applied as amplitude modulation factors to the wa-
termover flow, the flow of all controlled watermovers will default to their
uncontrolled values. An example of this usage is shown below.

<control
tslen="15"
tstype="minute"
startdate="01jan1994"
starttime="1200"
enddate="05jan1994"
endtime="0600"
alpha="0.500"
solver="PETSC"
method="gmres"
precond="ilu"
controllers="off">

</control>
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12 Controller Monitors

The RSM controllers are configured to allow monitoring of state variables,
controller error values, controller output values, or the maximum (uncon-
trolled) flow of a watermover through use of the <ctrlmonitor> environ-
ment. The control monitors are typically defined in the <output>, <management>,
or <controller> sections of the XML file to either record control values to
an output, or provide input to supervisors or controllers. Each control mon-
itor must define one of four attributes: state, error, control or maxflow.
It also required that the controller id (cID) is specified to select the desired
controller.

The <ctrlmonitor> environments available are shown in Table 12.

environment attribute meaning
<ctrlmonitor>

cID ID of controller to be monitored
attr attribute to be monitored
montype type of variable: scalar, vector
var variable name for type vector

Table 12. Control Monitor XML

The cID attribute specifies the controller id number of the controller
to be monitored. The cID must be a positive integer. In the case where
multiple controllers are attached to a watermover, it is the mechanism that
specifies which specific controller is monitored. If there is a need to monitor
the effective control applied to a watermover when multiple controllers are
attached to a watermover, one may use the <wmmonitor> as described in the
following section.

If the monitor is applied to a controller which accepts multi-inputs, such
as the fuzzy controller or user controller, the var is assigned the name of
the input variable that is to be monitored and the montype is set to vector.
(See section 15.7 or 15.8).

An example of a controller monitor is shown below for a single input,
single (not multiple) controller attached to a watermover:
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<output>
<ctrlmonitor cID="101" attr="state">
<dss file="pidctrl_gweir.dss"
pn="/hse/wm1/state//15min/calc1/">

</dss>
</ctrlmonitor>
<ctrlmonitor cID="101" attr="error">
<dss file="pidctrl_gweir.dss"
pn="/hse/wm1/error//15min/calc1/">

</dss>
</ctrlmonitor>
<ctrlmonitor cID="101" attr="control">
<dss file="pidctrl_gweir.dss"
pn="/hse/wm1/control//15min/calc1/">

</dss>
</ctrlmonitor>

</output>

An example of a controller monitor is shown below for a multiple input
controller. The first two control monitors are monitoring the multi-state
input variables named segment1Head and segment2Head from watermover
wmID="1", one monitor for each variable.

<output>
<ctrlmonitor cID="101" attr="state" var="segment1Head" montype="vector" >
<dss file="fuzctrl_hq.dss" pn="/hse/wm1/state1//15min/calc1/">
</dss>

</ctrlmonitor>
<ctrlmonitor cID="101" attr="state" var="segment2Head" montype="vector">
<dss file="fuzctrl_hq.dss" pn="/hse/wm1/state2//15min/calc1/">
</dss>

</ctrlmonitor>
<ctrlmonitor cID="101" attr="error">
<dss file="fuzctrl_hq.dss" pn="/hse/wm1/error//15min/calc1/">
</dss>

</ctrlmonitor>
<ctrlmonitor cID="101" attr="control">
<dss file="fuzctrl_hq.dss" pn="/hse/wm1/control//15min/calc1/">
</dss>

</ctrlmonitor>
</output>
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12.1 Watermover Control & Maxflow Monitors

As an alternative to using the <ctrlmonitor> to monitor the output control
values, one may also use the <wmmonitor> with the attribute attr="control"
specified. This may be more convenient than using a <ctrlmonitor> when
the desire is to monitor the ”effective” control signal applied to a water-
mover. This usage monitors the actual instantaneous control value applied
to the watermover, even if multiple controllers are attached to a watermover.

The <wmmonitor> environments available are shown in Table 12.1.

environment attribute meaning
<wmmonitor>

wmID Required ID of watermover to be monitored
attr Required attribute to be monitored
label Optional label

Table 12.1. Watermover Monitor XML

The possible attributes for a <wmmonitor> are "flow", "volume", "control",
"maxflow". If attr="control" then the applied control value is monitored.
If attr="maxflow" then the maximum available flow (the flow that will re-
sult if the control value = 1) is reported. An example of a <wmmonitor>
reporting the control is shown below.

<wmmonitor wmID="2" attr="control">
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13 Data Monitor Filters

The MSE relies upon assessor and filters to provide specialized and general-
ized data preprocessing. An assessor is a information processor intended to
provide specialized aggregation or differentiation of state variables particular
to a managerial decision process. Filters are generic information processors
implemented to perform simple, often redundant data filtering operations.
For example, a filter may apply a scalar or timeseries amplitude modula-
tion consisting of the usual arithmetic operations (multiplication, division,
addition, subtraction) or may compute simple timeseries or spatial variable
statistics such as arithmetic, geometric, or other expectations, or may act
as an accumulator.

The RSM implements a unified design approach for monitors, filters,
and assessors based on object oriented design principles. As a result, the
interfacing of these constructs from the user’s perspective is particularly
simple, and powerful. Assessor and filters operate in a piped FIFO fashion,
as exemplified by the XML fragments below and in figure 11.

<WcuAssessor asmtID="101" name="Reach1" mode="wsneeds">
<target> <dss file="Reach1Target.dss"/> </target>

</WcuAssessor>

<filter type="offset">
<offset><dss file="Reach1Offset.dss"/></offset>
<filter type="MovingAvg" numAvg="15">

<assessormonitor id="101" attr="flow"></assessormonitor>
</filter>

</filter>
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Figure 11: Filter preprocessors can be applied as piped operations.

The first XML section defines a water control unit assessor (WcuAsses-
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sor) attached to the canal unit Reach1. The assessor is in water supply needs
mode, which computes the flow required in the control unit to satisfy the
target levels specified in the timeseries file Reach1Target.dss. The second
section defines a dual-stage filter applied to the assessed flow values. An as-
sessormonitor is used to reference the assessed flow, and serves as input to a
moving average filter. The output of the moving average filter is input to an
offset filter, with offset values specified by the timeseries Reach1Offset.dss.
To change the data source, order, or type of operations, one simply recon-
figures the XML specification. This procedure can be automated with the
use of a graphical user interface software application.

There are four types of filters available:

1. Amplitude Multiplication (scale)
2. Amplitude Add/Subtract (offset)
3. Moving Average
4. Accumulation (sum)

To select a filter the user specifies the type="" attribute of the <filter>
environment with one of the following values: "mult"", "offset","movingavg","sum".
If no type="" is specified, the filter defaults to a multiplication. The other
attributes and their values are shown in Table 13.

environment attribute meaning
<filter>

label optional filter label
type ”mult”, ”offset”, ”movingavg”, ”sum”
mult value of multiplier
offset value of offset
numAvg number of timesteps to average over
numSum number of timesteps to accumulate
order reserved for future use

Table 13. Filter XML
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14 MSE Network

The MSE network is an abstraction of the canal network and control struc-
tures suited to the needs of water resource routing and decisions. It is based
on a standard graph theory representation of a flow network comprised of
arcs and nodes [6, 7]. The MSE network data objects serve as state and
process information repositories for management processes. They maintain
assessed and filtered state information, parameter storage relevant to canals
or hydraulic structure managerial constraints and variables, and serve as an
integrated data source for any MSE algorithm seeking current state infor-
mation.

The primary stream object in the MSE network is the Water control
unit (WCU). A WCU maps a collection of HSE stream segments that are
operationally managed as a discrete entity to a single arc in the MSE net-
work. WCU’s are typically bounded by hydraulic control structures, which
are represented as nodes in the MSE network. Each WCU includes asso-
ciative references to all inlet and outlet hydraulic flow nodes. Some of the
variables stored in a structure (node) object include:

1. current flow capacity
2. maximum design flow capacity
3. reference to hydraulic watermover
4. reference to structure controller
5. operational policy water levels
6. supply
7. demand

while the WCU (arc) objects incorporate:

1. flow capacity
2. seasonal maintenance levels
3. inlet flow
4. outlet flow
5. water depth
6. water volume

Each WCU in the MSE network is referenced by a unique label, and
has an associative data storage object which dynamically allocates storage
for assessment results. This allows multiple, independent assessments of
the WCU state. For example, one assessment of WCU inlet structure flows

87



might come from a graph algorithm, while another could be stored from a
LP model.

This abstraction from hydrological objects to managerial objects con-
denses the network representation facilitating the organization and storage of
relevant assessed state and process information. As an example, figure 12 de-
picts an HSE stream network consisting of 63 nodes and 62 segments. Some
of the nodes correspond to locations of hydraulic control structures, though
the association is not apparent from examination of the HSE network. Each
HSE stream segment has a unique identifier which allows the modeler or
MSE processor to monitor state information of the segment. However, it
may be appropriate to make water management decisions based on some
assessed or filtered version of aggregated HSE stream segment states.

Figure 12: Example HSE stream network segments and nodes.

Consider now an abstraction of the HSE network into 10 WCU’s, regu-
lated by 11 hydraulic structures. An schematic of such a MSE network is
presented in figure 13. In the MSE network each node represents a hydraulic
structure which regulates a WCU, while a single line segment, or group of
line segments between structures defines a WCU.

The MSE Network serves as an integrated data store for MSE algo-
rithms which need access to aggregated, differentiated, or averaged values
of hydrological variables. These processed values are typically produced by
Assessors, which store the results in the proper data container of the MSE
Network.
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Figure 13: Example MSE network abstraction of HSE network into WCU’s
and structures.
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Figure 14: HSE & MSE Network
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14.1 Dummy Nodes & Arcs

Generally, an <mse_node> has a direct correspondence to a watermover that
represents a flow control structure, however, in some cases it is necessary
to create a dummy <mse_node> to preserve the graph representation of the
MSE Network. These instances are:

1. Branch in the canal network
2. Canal side-flow structure
3. Network flow endpoints

The first case is a result of the fact that an <mse_arc> must have only
one source node, and one sink node. Therefore, where a branch in the
canal network occurs, you must provide a dummy <mse_node> to serve as
an endpoint for the branching <mse_arc>. An example XML of a dummy
<mse_node> is shown in section 14.3.

The second instance refers to situations where a flow structure water-
mover is not an endpoint in a canal, but a ’side-flow’ structure which has
one bank of the canal as it’s flow source. In this case it is appropriate to
add a dummy <mse_node> at this point, which will be attached to a dummy
<mse_arc>, which in turn attaches to the flow structure <mse_node>.

In the third case, if one wishes to implement one of the graph-flow algo-
rithms as an assessor or supervisor, it is required that the flow network have
only one inlet (source) node and one outlet (sink) node. Again, a dummy
<mse_node> can be created for each of these, with one dummy <mse_arc>
added between the dummy source/sink node and each structure watermover
source/sink node in the modeled flow network.

14.2 MSE Network XML

As with other RSM model inputs, the WCU mapping from the HSE stream
network to the MSE Network, as well as assignment of canal and structure
parameters is performed with an input XML entry. The XML Document
Type Definition (DTD) file for the MSE Network is distinct from the HSE
DTD file. The MSE Network DTD file is: mse_network.dtd, and must be
appropriately referenced in the MSE Network XML file header, as shown
below.

<?xml version="1.0"?>
<!DOCTYPE mse_network SYSTEM "../mse_network.dtd" [
]>

90



The excerpt below shows basic elements in the construction of an MSE
network.

<mse_network name="Test Network">
<mse_arcs>
<mse_arc name="Reach_1" capacity="1400">
<hse_arcs> 100 101 102 103 </hse_arcs>
<node_source> "S11" </node_source>
<node_sink> "S11_A" </node_sink>

</mse_arc>
<!-- more mse_arc entries.... -->

</mse_arcs>
<mse_nodes>
<flow_source> "S1" </flow_source>
<flow_sink> "Sink" </flow_sink>
<mse_node name="S11" purpose="WaterSupply" designCap="3000.">
<supply name="S11 Supply"> <const value="100"> </const> </supply>
<open name="S11 Open"> <rc id="2"></rc> </open>
<close name="S11 Close"> <const value="5.5"> </const> </close>

</mse_node>
<!-- more mse_node entries.... -->

</mse_nodes>
<mse_units>
<mse_unit name="WCU1">
<unit_arcs> "Reach_1" "Reach_1S" "Reach_1E" </unit_arcs>
<maintLevel name="maint"> <const value="5.5"> </const> </maintLevel>
<inlet name="S11 inlet"> "S11" </inlet>
<outlet name="S7 outlet" > "S7" </outlet>
<outlet name="S9 outlet" > "S9" </outlet>

</mse_unit>
<!-- more mse_unit entries.... -->

</mse_units>
</mse_network>

The above example does not define an operational MSE Network, but
simply illustrates the structure and attributes of the XML file. Working ex-
amples can be found in the Benchmarks BM63, BM49, BM48. The following
sections detail the contents of the MSE Network XML environments.

14.2.1 MSE Arc

The <mse_arcs> environment can only contain <mse_arc> entries. The
<mse_arc> establishes a collection of HSE stream segments as a single entity,
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and defines the nodes which connect to this arc. The allowed environments
in a <mse_arc> are <hse_arcs>, <node_source>, <node_sink>, with the
following meanings:

• <hse_arcs> - a list of valid integer HSE segment ID’s
• <node_source> - a single quoted string listing the name of a mse_node

at the head of this mse_arc
• <node_sink> - a single quoted string listing the name of a mse_node

at the tail of this mse_arc

The XML entries for the <mse_arc> attributes and environments are
shown in Table 14.2.1.

environment attribute meaning
<mse_arc>

name required arc name
capacity optional flow capacity

<hse_arcs> list of HSE segments ID’s
<node_source> source node name
<node_sink> sink node name

Table 14.2.1. <mse_arc> XML

14.3 Dummy Arc XML

A dummy <mse_arc> should not have any internal XML environments, it
should only define <mse_arc> name and capacity attributes as shown in
the example below.

<mse_arc name="R1_endflow" capacity="1400"> </mse_arc>

14.3.1 MSE Node

The <mse_nodes> environment can contain the following three entries:

• <mse_node> - endpoints of all <mse_arc>
• <flow_source> - string of <mse_node> name which is the flow source

of the entire network
• <flow_sink> - string of <mse_node> name which is the flow sink of

the entire network
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There can only be one <flow_source> and one <flow_sink> entry.
There must be multiple (at least 2) <mse_node>.

A mse_node must exist at the junction and endpoint of every <mse_arc>.
Each mse_node entry must correspond exactly in name="" attribute to ei-
ther a <node_source> or <node_sink> defined in the <mse_arcs>. The
mse_node attributes are assigned in order to provide operational parame-
ters and specifications relevant to flow control structures. The mse_node
may contain the following environments:

• <open> - operational stage for gate full open ‡
• <close> - operational stage for gate full closed ‡
• <supply> - node supply (excess flow) ‡
• <demand> - node demand (deficit flow) ‡

The XML entries for the <mse_node> environment are shown in Table
14.3.1.

environment attribute meaning
<mse_node>

name required node name
priority reserved for future use
purpose ”ws”, ”fc”, ”wsfc”, ”none” †
label any string
designCap design flow capacity
structure ”yes” or ”no”
managed ”yes” or ”no”
watermover ”none” or watermover label

<open> gate open stage ‡
name user defined label

<close> gate close stage ‡
name user defined label

<supply> node supply ‡
name user defined label

<demand> node demand ‡
name user defined label

Table 14.3.1. <mse_node> XML

†Attributes for purpose may also be expressed as: "watersupply",
"floodcontrol", "watersupplyfloodcontrol".
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‡The <open>, <close>, <supply>, and <demand> environments can hold
one of <dss>, <const>, or <rc> environments to specify a timeseries file,
constant value, or rulecurve timeseries respectively.

14.4 Dummy Node XML

A dummy <mse_node> should not have any internal XML environments,
it should only define <mse_node> name attribute as shown in the example
below.

<mse_node name="S11"></mse_node>

14.4.1 MSE Unit

The mse_unit aggregates one or more mse_arc into WCU’s. The allowed
environments in a <mse_unit> are as follows:

• <unit_arcs> - the collection of <mse_arc> that constitute a water
control unit (WCU)

• <inlet> - a <mse_node> that flows into the WCU, there may be mul-
tiple <inlet>, but only one <mse_node> per <inlet>

• <outlet> - a <mse_node> that WCU discharges from the WCU, there
may be multiple <outlet>, but only one <mse_node> per <outlet>

• <maintLevel> - operational maintenance level of the WCU
• <fcLevel> - operational flood control level of the WCU
• <rcptLevel> - operational rule curve level of the WCU
• <localLevel> - operational local level of the WCU

The XML entries for the <mse_unit> environment are shown in Table
14.4.1.
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environment attribute meaning
<mse_unit>

name required unit name
purpose ”ws”, ”fc”, ”wsfc”, ”none” †

<unit_arcs> list of <mse_arc>
<maintLevel> regional maintenance stage

name user defined label
<localLevel> local maintenance stage

name user defined label
<fcLevel> flood control stage

name user defined label
<rcptLevel> rule curve point stage

name user defined label
<inlet> one <mse_node> name

name user defined label
<outlet> one <mse_node> name

name user defined label

Table 14.4.1. <mse_unit> XML

†Attributes for purpose may also be expressed as: "watersupply",
"floodcontrol", "watersupplyfloodcontrol".

‡The <maintLevel>and <localLevel> environments can hold one of
<dss>, <const>, or <rc> environments to specify a timeseries file, constant
value, or rulecurve timeseries respectively.

If the purpose attribute is explicitly specified in the mse_unit, then the
value specified will be the value of the WCU purpose. This will override
any other value of purpose that may be set in an outlet node of the WCU. If
a value is not specified in the <mse_unit> purpose attribute, then a logical
OR operation is carried on all of the <outlet> <mse_node> purpose val-
ues. The numeric values of the purpose attributes are shown in Table 14.4.1.

purpose value
none 0x0000
ws, watersupply 0x0001
fc, floodcontrol 0x0010
wsfc, watersupplyfloodcontrol 0x0011
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Table 14.4.1. Value of mse_unit and mse_node purpose attribute.

For example, if an <mse_unit> does not specify the purpose attribute,
and there are three outlet <mse_node> which have been assigned a purpose
of floodcontrol, floodcontrol and watersupply respectively, then the
<mse_unit> purpose will have the value watersupplyfloodcontrol (0x0011).

14.5 MSE Network Flat File

In addition to the XML specification of the MSE Network, it is also possible
to define the MSE Network representation in a flat-file format. The file
format consists of three sections, of which only the first is required. The
first section defines a list of arcs (2 nodes) with capacity, and an optional arc
label on each line. The second section assigns supply or demand constraints
to the individual nodes. The third section defines network-wide properties
such as the source node, sink node, and graph flow algorithm push scale.
An example of this format is shown below, and resides in the benchmarks
BM48 and BM49.

// This graph corresponds to the hypothetical flow network from
// the WMM primer for wsneeds, mse_network.xml in BM48 BM63.
//
// Define the network arcs as pairs of nodes with capacity:
// node1 node2 capacity [label]
S11 S11_A 1400 Reach_1
S11_A S7 1000 Reach_1S
S11_A S9 500 Reach_1E
S7 S7_A 1000 Reach_2
// Define the node supply & demand, the sum has to equal zero
// node +supply/-demand
S11 100
S7 -100
// source, sink and push scale factor
source S11
sink S7
M 100
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15 Controller Examples

15.1 Example Geometry

To provide illustrative examples of the controller applications, a sample
geometry is defined using a simple canal network. A canal consisting of 4
segments is defined. Each segment is 100m wide, 3535m long, has a bottom
elevation of 492m, and a lip height of 0.2m. The first and fourth segments
are isolated from the network by junctionblocks. The first segment has a
constant segment source, which adds a constant flow to the first segment.
The fourth segment has a constant segment sink, which removes a constant
flow from the fourth segment. Watermover 1 is attached to segment 1, and
is controlled by the first controller. Watermover 2 is attached to segment 4,
and is controlled by the second controller. The initial heads in the first and
fourth segments are 505m, and 495m respectively. A schematic depiction of
the network is shown in Figure 15.
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Figure 15: Test Canal Network
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15.2 No Control

As a basis for comparison to controlled watermovers, this example shows the
’default’ situation with no control applied to the watermovers. The relevant
sections of the input XML file are reproduced below:

<network>

<!-- 5 nodes w/ 4 segments -->

<geometry file="canal3x3.map"> </geometry>

<initial file="canal3x3.init"> </initial>

<network_bc>

<!-- Block canal segments 1&2 and 3&4, 2->3 not blocked -->

<junctionblock id1="1" id2="2"> </junctionblock>

<junctionblock id1="3" id2="4"> </junctionblock>

<!-- Source into segment 1 -->

<segmentsource id="1"> <const value="1000.0"> </const>

</segmentsource>

<!-- Sink from segment 4 -->

<segmentsource id="4"> <const value="-1000.0"> </const>

</segmentsource>

</network_bc>

</network>

<watermovers>

<!-- discharge from canal segment 1 -->

<hq_relation wmID="1" id="1" label="">

<hq>

0.0 0.0

495.0 0.0

499.0 -50.0

500.0 -150.0

501.0 -300.0

510.0 -1000.0

</hq>

</hq_relation>

<!-- inflow into canal segment 4 -->

<hq_relation wmID="2" id="4" label="">

<hq>

0.0 0.0

490.0 1000.0

495.0 500.0

499.0 250.0

500.0 150.0

501.0 50.0

510.0 0.0

</hq>

</hq_relation>

</watermovers>

98



This XML file defines two HQ relation watermovers, which in themselves
can implement a control function. The first column defines a head elevation,
the second column the respective flow value that is executed at the head
value. The HQ relation watermover performs linear interpolation for head
values between those listed in the first column.

Figure 16 shows the segment 1 and segment 4 response to the water-
movers, sources and sinks, without any control exerted on the watermovers.
The segment 1 head falls to a value where equilibrium is reached between
the segment source and the watermover outflow at a head near 496m, like-
wise, the segment 4 head rises to an equilibrium near 508m. In order to try
and control the canal head one could form the watermover in such a way
that the target value is bracketed on either side by balanced positive and
negative flow values, in an attempt to establish a self-correcting watermover
that would seek a desired equilibrium value.
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Figure 16: No Control: Head
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15.3 PID Controller

Consider now the addition of a PID controller to both watermovers. The
PID controller is described in section 4. The controller section of the XML
input file is shown below:

<controller id="1">
<!-- Controller for discharge from segment 1 -->
<pidctrl cid="101" label="PIDCtrl 1: " wmID="1" type="positive"
Gi="0.01" Gd="0.0" Gp="7.0" ctrlMin="0.0" ctrlMax="1.0" >
<target label="const_target"><const value="500.0"></const></target>
<segmentmonitor id="1" attr="head"></segmentmonitor>

</pidctrl>
<!-- Controller for pumping into segment 4 -->
<pidctrl cid="102" label="PIDCtrl 2: " wmID="2" type="negative"
Gi="0.01" Gd="0.0" Gp="10.0" ctrlMin="0.0" ctrlMax="1.0" >
<target label="const_target"><const value="500.0"></const></target>
<segmentmonitor id="4" attr="head"></segmentmonitor>

</pidctrl>
</controller>

Both controllers are set to achieve a target head values of 500m in canal
segments 1 and 4. The segmentmonitor identifies the segment from which
the state variable (head) is obtained for controller input. The ctrlMin and
ctrlMax values set limits on the output of the controller. The controller will
compute values of flow regulation which will minimize the error between
the state variable and the target value. Figure 17 shows the segment heads
resulting from a run of the PID controller. The watermovers have converged
to maintenance of the target head values after approximately two days of
simulation time.

15.3.1 No Pre-Simulation Iteration

Figure 18 plots the control outputs of the two controllers.
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Figure 17: PID No Pre-run Integration: Head
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Figure 18: PID No Pre-run Integration: Control
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15.3.2 Pre-Simulation Iteration

To allow controllers with integrators (PID, Sigmoid, etc.) to initialize val-
ues of error integrals and derivatives, RSM provides the preRunIterations
program control variable (Section 10). Figure 19 plots the canal heads
under the same conditions as the previous example, but the the controller
preRunIterations set to 110. The corresponding control outputs are shown
in Figure 20. Both controllers have achieved the steady state target values,
and have done so in about half the time required without integration initial-
ization. It is anticipated that careful selection of the controller gains could
further improve the response.
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Figure 19: PID With Pre-run Integration: Head
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Figure 20: PID With Pre-run Integration: Control
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15.4 Sigmoid Controller

The sigmoid controller was also applied to the same canal network and wa-
termovers as the PID controller. The sigmoid controller is detailed in section
5. Following is the controller section from the input XML file:

<controller id="1">
<!-- Controller for discharge from segment 1 -->
<sigmoidctrl cid="101" label="SigmoidCtrl 1: " wmID="1"
type="positive" control="on" c="0.1" Gp="10.0" Gi="0.4" >
<target label="const_target"><const value="500.0"></const></target>
<segmentmonitor id="1" attr="head"></segmentmonitor>

</sigmoidctrl>
<!-- Controller for pumping into segment 4 -->
<sigmoidctrl cid="102" label="SigmoidCtrl 2: " wmID="2"
type="negative" control="on" c="0.1" Gp="10.0" Gi="0.4">
<target label="const_target"><const value="500.0"></const></target>
<segmentmonitor id="4" attr="head"></segmentmonitor>

</sigmoidctrl>
</controller>

Figure 21 plots the canal segment heads in response to the sigmoid con-
trolled watermovers. The response is seen to be smooth and quickly con-
verging to the target values. The respective controller output values are
shown in Figure 22.
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Figure 21: Sigmoid Controller: Head
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Figure 22: Sigmoid Controller: Control
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15.5 SetPoint Controller

The SetPoint controller is detailed in Section 6. Since the setpoint con-
troller does not accept explicit target values, a somewhat different setup in
the canal network parameters is used. In particular, the canal segment 1
and canal segment 4 constant segment source/sink are changed from ±1000
to ±500. The HQ relation watermover tables are also different. The corre-
sponding sections for the watermovers and controllers are shown below:

<watermovers>

<!-- discharge from canal segment 1 -->

<hq_relation wmID="1" id="1" label="">

<hq>

0.0 0.0

490.0 -100.0

495.0 -500.0

500.0 -1000.0

510.0 -1000.0

</hq>

</hq_relation>

<!-- inflow into canal segment 4 -->

<hq_relation wmID="2" id="4" label="">

<hq>

0.0 1000.0

495.0 1000.0

500.0 500.0

510.0 100.0

600.0 0.0

</hq>

</hq_relation>

</watermovers>

<controller id="1">

<!-- Controller for discharge from segment 1 -->

<setpointctrl cid="101" label="SPCtrl 1: " wmID="1"

window="all" setlow="0.0" sethigh="1.0"

triglow="500.0" trighigh="505.0" trigger="on">

<segmentmonitor id="1" attr="head"></segmentmonitor>

</setpointctrl>

<!-- Controller for pumping into segment 4 -->

<setpointctrl cid="102" label="SPCtrl 2: " wmID="2"

window="outside" setlow="0.0" sethigh="1.0" step="down"

triglow="500.0" trighigh="501.0" trigger="on" >

<segmentmonitor id="4" attr="head"></segmentmonitor>

</setpointctrl>

</controller>
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The controller for canal segment 1 is set to transition between outputs of
0 and 1 at trigger (state variable monitor) values of 500 and 505m. The win-
dow type is “all”, which indicates that linear interpolation will be performed
between the low and high trigger values. When the controller initiates, the
head (state variable) is high (Figure 23), and the setpoint controller will
limits to the high setpoint of 1 (Figure 24), which will result in a full flow
of -1000 for the segment 1 watermover. This causes the segment 1 head
to fall into the range between 500 and 505, the linear interpolation range
of the setpoint controller. As the head approaches the value of 500m, the
controller computes an output value that approaches zero, thereby reducing
flow of the watermover to a small value. The transition is a smooth one
owing to the linear interpolation of control output values. The controller
for segment 4 is set with window “outside”, which enacts a binary switch
control that will output one of two values, 0 or 1. As shown in Figure 23,
the initial head is below 500m, resulting in a control output value of 1. The
output is 1 since the type of control is step=”down”. If the control was set
for step=”up”, the output at this point would have been zero. This allows
the watermover to contribute positive flows into the segment which raise the
local head. As the head rises to 500.5m (halfway between the triglow and
trighigh threshold values, the controller transitions to the zero binary state,
thereby turning off the watermover flow. The canal head is then observed to
slowly decline as a result of the negative flow segment boundary condition.
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Figure 23: SetPoint Controller: Head
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Figure 24: SetPoint Controller: Control
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15.6 Sigmoid Gated Weir Controller

This example shows control of a gated weir watermover with a Sigmoid
controller. The watermover for canal segment 1 is configured as a gated weir,
with a width of 100m, crest elevation at 502.5m, and flow coefficients set to
0.9. Canal segment 1 has a source with an inflow of 1000, canal segment
2 has a segmenthead boundary condition of 500.m applied to maintain the
downstream weir head. The XML code for the controller is shown below:

<controller id="1">
<sigmoidctrl cid="101" label="SigmoidCtrl 1: " wmID="1" control="on"
type="positive" nvals="3" Gi="0.01" Gp="10.0">
<target label="const_target"><const value="502"></const></target>
<segmentmonitor id="1" attr="head"></segmentmonitor>

</pidctrl>
</controller>

The canal head elevations and gate control outputs are shown in Fig-
ures 25 and 26. The initial head is above the target, so the initial control
command is to fully open the gate (control = 1.) so that the canal head falls
to a value near the target. The head cannot reach the target as a result of
the self- limiting flow imposed by the elevation of the weir crest. Once the
head has initially fallen, the controller attempts to partially close the gate
in anticipation of not overshooting the target. As the target value is slowly
approached, the controller commands the gate to open further to reach the
target value.

109



����������	�
�������
�������������������

� � � � � � � � � �


������

�
���

�
���

�
���

�
��


�
���

�
���

�
���

�
���

�����	�
�	����	����

Figure 25: Sigmoid Gated Weir: Head
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Figure 26: Sigmoid Gated Weir: Control
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15.7 Fuzzy Controller

This section provides an example application of the fuzzy controller. The
fuzzy controller is described in section 7. The control is implemented on two
sets of hq_relation watermovers, one set for inflow/discharge from segment
one, the other set for inflow/ discharge for segment four.

<watermovers>

<!-- discharge from canal segment 1 -->

<hq_relation wmID="1" id="1" label="">

<hq>

480.0 0.0

495.0 -100.0

498.0 -200.0

499.0 -500.0

500.0 -1000.0

501.0 -1000.0

510.0 -1000.0

</hq>

</hq_relation>

<!-- inflow into canal segment 1 -->

<hq_relation wmID="2" id="1" label="">

<hq>

480.0 1000.0

495.0 1000.0

498.0 1000.0

500.0 1000.0

505.0 500.0

510.0 0.0

</hq>

</hq_relation>

<!-- discharge from canal segment 4 -->

<hq_relation wmID="3" id="4" label="">

<hq>

480.0 0.0

495.0 -100.0

498.0 -200.0

499.0 -500.0

500.0 -1000.0

501.0 -1000.0

510.0 -1000.0

</hq>

</hq_relation>

<!-- inflow into canal segment 4 -->

<hq_relation wmID="4" id="4" label="">

<hq>

480.0 1000.0

495.0 1000.0
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498.0 1000.0

500.0 1000.0

505.0 500.0

510.0 0.0

</hq>

</hq_relation>

</watermovers>

The function of the fuzzy controller is to output control values which
enact watermover flows to achieve target head values of 500m in the canal
segments 1 and 4. The fuzzy controller is implemented as a dual-input,
single-output controller for each watermover.

The XML controller section is reproduced below.
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<controller id="1">

<!-- Controller for discharge from segment 1 -->

<fuzctrl cid="101" wmID="1" fcl="hq2.fcl" label="fcl1"

<varIn name="segment1Head" monitor="segmentmonitor"

monID="1" monType="head"> </varIn>

<varIn name="segment2Head" monitor="segmentmonitor"

monID="2" monType="head"> </varIn>

<varOut name="control1Out"> </varOut>

<segmentmonitor id="1" attr="head"></segmentmonitor>

<segmentmonitor id="2" attr="head"></segmentmonitor>

</fuzctrl>

<!-- Controller for pumping into segment 1 -->

<fuzctrl cid="102" wmID="2" fcl="hq2.fcl" label="fcl2"

<varIn name="segment1Head" monitor="segmentmonitor"

monID="1" monType="head"> </varIn>

<varIn name="segment2Head" monitor="segmentmonitor"

monID="2" monType="head"> </varIn>

<varOut name="control1Out"> </varOut>

<segmentmonitor id="1" attr="head"></segmentmonitor>

<segmentmonitor id="2" attr="head"></segmentmonitor>

</fuzctrl>

<!-- Controller for discharge from segment 4 -->

<fuzctrl cid="103" wmID="3" fcl="hq2.fcl" label="fcl3"

<varIn name="segment3Head" monitor="segmentmonitor"

monID="3" monType="head"> </varIn>

<varIn name="segment4Head" monitor="segmentmonitor"

monID="4" monType="head"> </varIn>

<varOut name="control1Out"> </varOut>

<segmentmonitor id="3" attr="head"></segmentmonitor>

<segmentmonitor id="4" attr="head"></segmentmonitor>

</fuzctrl>

<!-- Controller for pumping into segment 4 -->

<fuzctrl cid="104" wmID="4" fcl="hq2.fcl" label="fcl4"

<varIn name="segment3Head" monitor="segmentmonitor"

monID="3" monType="head"> </varIn>

<varIn name="segment4Head" monitor="segmentmonitor"

monID="4" monType="head"> </varIn>

<varOut name="control1Out"> </varOut>

<segmentmonitor id="3" attr="head"></segmentmonitor>

<segmentmonitor id="4" attr="head"></segmentmonitor>

</fuzctrl>

</controller>

The <varIn> specification specifies the two input variables, as well as
the corresponding state variable monitor inputs. Each watermover controller
(cid="101" wmID="1") input variable definition specifies the two input vari-
ables (e.g. segment1Head and segment2Head) which derive their respective
state information from the head of the corresponding segment monitors.
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The specification of the <varIn> establishes the information required to
link the input state monitor with the input variable in the FCL definition
file. Both the <varIn> and <varOut> variables must have a corresponding
entry (VAR_INPUT, VAR_OUTPUT) in the FCL definition file.

The FCL definition file forms the core of the fuzzy control specification
for a fuzzy controller. Refer to the FCL standard [4] for nomenclature and
usage. In this example, the FCL file (fcl="hq2.fcl") defines the dual-
input, single-output fuzzy controller applied to each controlled watermover,
and is reproduced below.

The VAR_INPUT and VAR_OUTPUT definitions correspond to the <varIn>
and <varOut> definitions in the XML file. The FUZZIFY sections delineate
the input membership functions which fuzzify the input state variable in-
formation. The DEFUZZIFY block specifies the output membership function,
which in the example is a set of singleton values. The RULEBLOCK section
defines the rule-base that is applied via the fuzzy logic inferencing method
to arrive at a control output value. Each section is described below.
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FUNCTION_BLOCK Fuzzy_FB

VAR_INPUT

// input variables

segment1Head : REAL;

segment2Head : REAL;

segment3Head : REAL;

segment4Head : REAL;

END_VAR

VAR_OUTPUT

// output variable

control1Out : REAL;

END_VAR

FUZZIFY segment1Head

// low ramp, med trapezoid, high ramp

TERM low := (499, 1) (500, 0);

TERM med := (498, 0) (499, 1) (501, 1) (502, 0);

TERM high := (500, 0) (501, 1);

END_FUZZIFY

FUZZIFY segment2Head

// low ramp, med trapezoid, high ramp

TERM low := (499, 1) (500, 0);

TERM med := (498, 0) (499, 1) (501, 1) (502, 0);

TERM high := (500, 0) (501, 1);

END_FUZZIFY

FUZZIFY segment3Head

// low ramp, med trapezoid, high ramp

TERM low := (499, 1) (500, 0);

TERM med := (498, 0) (499, 1) (501, 1) (502, 0);

TERM high := (500, 0) (501, 1);

END_FUZZIFY

FUZZIFY segment4Head

// low ramp, med trapezoid, high ramp

TERM low := (499, 1) (500, 0);

TERM med := (498, 0) (499, 1) (501, 1) (502, 0);

TERM high := (500, 0) (501, 1);

END_FUZZIFY
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DEFUZZIFY control1Out

// All outputs are singletons

TERM zero := 0.;

TERM quarter := 0.25;

TERM half := 0.5;

TERM threeQuarter := 0.75;

TERM one := 1.;

ACCU: MAX;

METHOD: COG;

DEFAULT:= 0;

RANGE:= (0, 1);

END_DEFUZZIFY

RULEBLOCK No1

AND : MIN;

OR : MAX;

ACT : MIN;

RULE 1: IF segment1Head IS low THEN control1Out IS zero;

RULE 2: IF segment1Head IS med THEN control1Out IS half;

RULE 3: IF segment1Head IS high THEN control1Out IS one;

RULE 4: IF segment1Head IS low AND segment1Head IS med

THEN control1Out IS quarter;

RULE 5: IF segment1Head IS high AND segment1Head IS med

THEN control1Out IS threeQuarter;

RULE 6: IF segment2Head IS low

THEN control1Out IS threeQuarter;

RULE 7: IF segment2Head IS high THEN control1Out IS quarter;

RULE 8: IF segment4Head IS low THEN control1Out IS one;

RULE 9: IF segment4Head IS med THEN control1Out IS half;

RULE 10: IF segment4Head IS high THEN control1Out IS zero;

RULE 11: IF segment4Head IS low AND segment4Head IS med

THEN control1Out IS threeQuarter;

RULE 12: IF segment4Head IS high AND segment4Head IS med

THEN control1Out IS quarter;

RULE 13: IF segment3Head IS low THEN control1Out IS threeQuarter;

RULE 14: IF segment3Head IS high THEN control1Out IS quarter;

END_RULEBLOCK

END_FUNCTION_BLOCK
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15.7.1 Fuzzification

The FUZZIFY keyword defines an FCL section which specifies the input vari-
able membership function and terms. In this example, the membership
functions contain three terms each, low, med and high, where the lowand
high terms are ’ramps’, and the med term is a trapezoid. The input state
monitor values are applied to the ordinate of this membership function,
generating a membership value µ for each term of the membership function.
Figure 27 plots the input membership function for this example.
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Figure 27: Segment*Head input fuzzification function
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15.7.2 Defuzzification

The DEFUZZIFY keyword defines an FCL section that specifies the output
variable defuzzification membership function and terms. In this example,
the membership function has five terms zero, quarter, half, threeQuarter
and one. Each term is a singleton rather than a typical fuzzy membership
term. The use of a singleton does not impact the fuzzy inferencing algorithm,
or prevent output variable interpolation between output term values. A
graph of the output membership function is shown in Figure 28.
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Figure 28: Control1Out output function
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15.7.3 Rules

The RULEBLOCK section defines the expert rule-base which governs the in-
teraction and response of the controller to the various input states. In this
example, a single fuzzy controller rule-base definition is used for both wa-
termover controllers. The rule-base incorporates 10 rules, 5 of which are
enacted for each watermover. It would have been equally valid to create two
separate FCL files, with the 5 rules for each controller in each FCL file.

The canal head elevations and fuzzy controller control outputs are shown
in Figures 29 and 30.
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Figure 29: Fuzzy Control: Head

119



����������	
��	�����
���������
������

����� ����� ����� ����� ����� �����

���������

���

���

���

���

���

���

����������	
��	 ����������	
��	

Figure 30: Fuzzy Control: Control
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15.8 User Controller

This section provides an example application of the user defined controller.
The user controller is described in section 8. The controlled watermovers
for segment 1 and segment 4 are shown below.

<watermovers>

<!-- discharge from canal segment 1 -->

<hq_relation wmID="1" id="1" label="">

<hq>

0.0 0.0

495.0 0.0

499.0 -50.0

500.0 -150.0

501.0 -300.0

510.0 -1000.0

</hq>

</hq_relation>

<!-- inflow into canal segment 4 -->

<hq_relation wmID="2" id="4" label="">

<hq>

0.0 0.0

490.0 1000.0

495.0 500.0

499.0 250.0

500.0 150.0

501.0 50.0

510.0 0.0

</hq>

</hq_relation>

</watermovers>
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To control the watermovers to achieve target canal levels of 500m, two
controllers are defined as shown in the XML controller section reproduced
below. Each controller is a user defined function, both functions are con-
tained in the shared object UserCtrl.so. Each function will receive an
InputStateMap which contains two InputState class objects, one for the
varIn Segment1 and one for Segment4. The values of the segmentmonitor
for each varIn will be placed in the InputState class object by RSM. The
return value of the function will be applied as an amplitude multiplier to
the watermover flow value.

<controller id="1">

<!-- Controller for discharge from segment 1 -->

<userctrl cid="101" label="Segment 1 Ctrl " wmID="1"

libType="C++" module="./UserCtrl.so" func="Segment1_Control">

<varIn name="Segment1" monitor="segmentmonitor"

monID="1" monType="head"></varIn>

<varIn name="Segment4" monitor="segmentmonitor"

monID="4" monType="head"></varIn>

<segmentmonitor id="1" attr="head"></segmentmonitor>

<segmentmonitor id="4" attr="head"></segmentmonitor>

</userctrl>

</controller>

<controller id="2">

<!-- Controller for pumping into segment 4 -->

<userctrl cid="102" label="Segment 4 Ctrl" wmID="2"

libType="C++" module="./UserCtrl.so" func="Segment4_Control">

<varIn name="Segment1" monitor="segmentmonitor"

monID="1" monType="head"></varIn>

<varIn name="Segment4" monitor="segmentmonitor" monID="4"

monType="head"></varIn>

<segmentmonitor id="1" attr="head"></segmentmonitor>

<segmentmonitor id="4" attr="head"></segmentmonitor>

</userctrl>

</controller>
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The C++ source code that defines the two controllers is shown below.

// userctrl.cc

//

// Example shared object module for User Defined Controller.

// This file is compiled into a shared object module which is loaded

// at runtime by the user specified userctrl section of the hse xml.

//

// To compile this code into an object named UserCtrl.so:

// gcc userctrl.cc -BSymbolic -shared -o UserCtrl.so

//

// The functions are declared as: extern "C" to prevent name mangling.

// Otherwise, the func= tag in the xml file will specify a name for

// the function that doesn’t match that in the shared lib module.

//

using namespace std;

#include <cstdio> // include if you want to use C-style printf

#include <map>

#include "../src/ControllerInput.h" // THIS FILE MUST BE INCLUDED
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//---------------------------------------------------------------------

// Function Segment1_Control for control of watermover into segment 1

//

extern "C" double Segment1_Control(

map<string, InputState*> *lpInputStateMap ) {

// define a local map object, assign content from the map pointer

map<string, InputState*> inputStateMap = *lpInputStateMap;

double controlOut = 0.; // output control value

InputState *lpInputState; // pointer for access convenience

// Ensure that we are getting what we expect

if ( not inputStateMap.size() ) {

printf("ERROR: Segment1_Control() empty inputStateMap \n");

return controlOut;

}

if ( inputStateMap.find("Segment1") == inputStateMap.end() ) {

printf("ERROR: Segment1_Control() did not find entry for

%s in inputStateMap \n", "Segment1");

return controlOut;

}

// Get pointer to desired inputState struct for this variable

lpInputState = inputStateMap["Segment1"];

// Ensure that the pointer is valid

if ( not lpInputState ) {

printf("ERROR: SetWM1Controller() Failed to get inputStateMap

member %s\n", "Segment1");

return controlOut;

}

// Get the current state value for this variable

double segment1Head = lpInputState->stateIn;

// Provide control function based on input state variable

if ( segment1Head > 502. ) controlOut = 1.;

else if ( segment1Head > 501. ) controlOut = 0.5;

else if ( segment1Head > 500. ) controlOut = 0.2;

else controlOut = 0.;

return controlOut;

}
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//---------------------------------------------------------------------

// Function Segment4_Control for control of watermover out of segment 4

//

extern "C" double Segment4_Control(

map<string, InputState*> *lpInputStateMap ) {

// define a local map object, assign content from the map pointer

map<string, InputState*> inputStateMap = *lpInputStateMap;

double controlOut = 0.; // output control value

InputState *lpInputState; // pointer for access convenience

// Ensure that we are getting what we expect

if ( not inputStateMap.size() ) {

printf("ERROR: Segment4_Control() empty inputStateMap \n");

return controlOut;

}

if ( inputStateMap.find("Segment4") == inputStateMap.end() ) {

printf("ERROR: Segment4_Control() did not find entry for

%s in inputStateMap \n", "Segment4");

return controlOut;

}

// Get pointer to desired inputState struct for this variable

lpInputState = inputStateMap["Segment4"];

// Ensure that the pointer is valid

if ( not lpInputState ) {

printf("ERROR: SetWM1Controller() Failed to get inputStateMap

member %s\n", "Segment4");

return controlOut;

}

// Get the current state value for this variable

double segment4Head = lpInputState->stateIn;

// Provide control function based on input state variable

if ( segment4Head < 498. ) controlOut = 1.;

else if ( segment4Head < 499. ) controlOut = 0.5;

else if ( segment4Head < 500. ) controlOut = 0.2;

else controlOut = 0.;

return controlOut;

}
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The canal head elevations and user controller control outputs are shown
in Figures 31 and 32.
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Figure 31: User Control: Head
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Figure 32: User Control: Control
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